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1. INTRODUCTION

Let 2 be a triangulation of a bounded polyhedral domain 0/Rn, i.e., 2
is a finite set of non-degenerate n-simplices such that

(1) 0=�T # 2 T;

(2) the interiors of the simplices in 2 are pairwise disjoint; and

(3) each facet of a simplex T # 2 either lies on the boundary of 0 or
is a common face of exactly two simplices in 2.

Given 1�r�d, we consider the spline space

Sr
d (2) :=[s # C r(0) : s|T # 6 n

d for all n-simplices T # 2],

where 6 n
d is the linear space of all n-variate polynomials of total degree at

most d. It is well-known that dim 6 n
d=( n+d

n ).
The application of splines in numerical computations requires efficient

algorithms for constructing locally supported bases for the space Sr
d (2) or

its subspaces (such as finite element spaces). Moreover, if a local basis
[s1 , ..., sm] for Sr

d (2) is in addition stable, i.e., for all :=(:1 , ..., :m) # Rm,

K1 &:&lp
�" :

m

k=1

:k sk"Lp(0)

�K2 &:&lp
,
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then a nested sequence of spaces

S r
d (21)/S r

d (22)/ } } } /S r
d (2q)/ } } } , (1.1)

may be used for designing multilevel methods of approximation on a
bounded domain 0/Rn, see e.g. [27] and references therein. In particular,
the sequence (1.1) constitutes a multiresolution analysis on 0 if the maximal
diameter of the triangles in 2q tends to zero as q � �, and if the constants
0<K1 , K2<� are independent of q. Note that the bases for the full space
Sr

d (2) are particularly interesting since S r
d (2q)/S r

d (2q+1) if 2q+1 is a
refinement of 2q . (This is not the case for the finite element subspaces of
Sr

d (2) when r�1; see [14, 25, 27].)
The famous B-splines constitute a stable locally supported basis for the

space Sr
d (2) in the one-dimensional case n=1 for all d�r+1. Moreover,

the dual basis is also local and therefore provides a quasi-interpolant pos-
sessing optimal approximation order. There are well known constructions
of local bases for Sr

d (2) in the bivariate case n=2 for all d�3r+2, see
[1, 21, 22, 26]. Stable local bases were constructed in [7, 23] for some
superspline subspaces, and in [17, 19] for the full bivariate spline spaces
Sr

d (2), d�3r+2. In the trivariate case n=3 local bases are known for all
d�8r+1 [2]. It was conjected in [2] that in general locally supported
bases for Sr

d (2) exist if d�r(2n&1)+n.
The main objective of this paper is to construct stable locally supported

bases for Sr
d (2) and its superspline subspaces for all n�2 and r�1

provided d�r2n+1.
We make use of the nodal approach originated in the finite element

method, see e.g. [12], and extended to the problems of spline spaces on
general triangulations in [26] and more recently in [8�11, 15, 16, 17]. We
show that in the multivariate case the nodal smoothness conditions can be
better localized than usual Bernstein�Be� zier smoothness conditions [5, 20].
The key point for our analysis is that certain matrices associated with the
smoothness conditions have a block diagonal structure, which in the same
time makes it possible to handle them efficiently in numerical computa-
tions, see Sections 5 and 6. In particular, the dimension of any given
spline space Sr

d (2), d�r2n+1, can be efficiently computed by a formula
obtained in Section 5.

The paper is organized as follows. In Section 2 we give some definitions
and preliminary lemmas. The nodal functionals that we use are described
in Section 3. Section 4 is devoted to a detailed analysis of nodal smoothness
conditions. In Section 5 we construct local bases for Sr

d (2), d�r2n+1. In
Section 6 we show how to achieve stability of these bases. Finally, in
Section 7 we extend the results to the superspline subspaces of Sr

d (2).
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2. PRELIMINARIES

2.1. Bases and Minimal Determining Sets

It is obvious that the linear space Sr
d (2) has finite dimension. In this

subsection we consider an abstract finite-dimensional linear space S,
although in all our applications we have S/Sr

d (2).
Let S* denote, as usual, the dual space of linear functionals on S.

Given a basis [sj] i # J for S, its dual basis is a basis [*j]j # J for S* such
that

*i sj=$i, j , all i, j # J. (2.1)

It is easy to see that the dual basis [*j] j # J is uniquely determined by
[sj] j # J , and vice versa, a basis [*j] j # J for S* uniquely determines a basis
[sj] j # J for S satisfying (2.1).

In order to construct a basis [sj] j # J for a spline space S it is often useful
to find first a basis [*j] j # J for S* and then determine [sj] j # J from the
duality condition (2.1). Usually, the required basis for S* can be selected
by an algorithm from a larger set 4/S* that spans S*. A common
example of such a set 4 is the set of linear functionals picking off a coef-
ficient of the Bernstein�Be� zier representation of splines s # S, see e.g. [2].
Keeping in mind the tradition upheld in the literature on bivariate and
multivariate splines, we will use the following terminology.

Definition 2.1. Any finite spanning set for S* is called a determining
set for S. Any basis for S* is called a minimal determining set for S.

A standard argument in linear algebra shows that a set 4/S* is a
determining set for S if and only if *s=0 for all * # 4 implies s=0 when-
ever s # S. Moreover, a determining set 4 is a minimal determining set for
S if and only if no proper subset of 4 is a determining set. Since every
linear functional on S is well-defined on any subspace S� of S, it is easy
to see that a determining set for S is also a determining set for S� .

Suppose 4 is a determining set for S. If 4 is not a minimal determining
set for S, then 4 is linearly dependent. It is particularly useful to know a
complete system of linear relations for 4.

Definition 2.2. Let 4=[*j]j # J /S* be a determining set for S.
Suppose that the functionals *j satisfy linear conditions

:
j # J

ci, j*j=0, i # I, (2.2)
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where ci, j are some real coefficients. We say that (2.2) is a complete system
of linear relations for 4 over S if for any a=(aj) j # J , with a j # R, j # J, such
that

:
j # J

ci, jaj=0, i # I, (2.3)

there exists an element s # S such that *j s=aj for all j # J.

Note that the element s # S as above is necessarily unique. Indeed, if
there are s1 , s2 # S such that *js1=*js2=aj for all j # J, then *j (s1&s2)=0,
j # J, which implies s1=s2 since 4 is a determining set for S.

Let C :=(ci, j) i # I, j # J . Then (2.3) means that the vector a lies in the null
space N(C) :=[a : CaT=0] of the matrix C. Thus, there is a 1�1 corre-
spondence between elements s # S and vectors a # N(C), where a=(aj) j # J ,
aj=*js. In particular, the dimension of S can be computed as follows.

Lemma 2.3. We have

dim S=dim N(C)=*4&rank C. (2.4)

Moreover, given a determining set 4 for S and a complete system of
linear relations for 4 over S with matrix C, it is straightforward to
construct a basis for S; see also [6].

Algorithm 2.4. Suppose 4=[*j] j # J /S* is a determining set for S,
and (2.2) is a complete system of linear relations for 4 over S. Let
a[k]=(a[k]

j ) j # J , k=1, ..., m, form a basis for the null space N(C) of C. For
each k=1, ..., m, construct the unique element s~ k # S satisfying *j s~ k=a[k]

j

for all j # J. Then [s~ 1 , ..., s~ m] is a basis for S.

It is not difficult to determine corresponding minimal determining set,
i.e., the basis [*� 1 , ..., *� m] for S* dual to [s~ 1 , ..., s~ m]. Let

A :=[a[k]
j ] j # J, k=1, ..., m .

Since the columns a[k] of this matrix are linearly independent, A has full
column rank. Hence, there exists a left inverse of A, i.e., a matrix

B=[bk, j]k=1, ..., m, j # J

satisfying BA=Im , where Im is the m_m identity matrix. Note that B is
not unique in general.
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Lemma 2.5. The dual basis [*� 1 , ..., *� m] can be computed by

*� k= :
j # J

bk, j*j , k=1, ..., m.

Proof. It is straightforward to check that the duality condition (2.1) is
satisfied. K

2.2. Geometry of a Triangulation in Rn

Recall that an l-simplex { (0�l�n) is the convex hull (v0 , ..., vl) of
l+1 points v0 , ..., vl # Rn called vertices of {. The simplex { is non-
degenerate if its l-dimensional volume is non-zero and degenerate
otherwise. The dimension of a non-degenerate l-simplex is l. By the interior
of an l-simplex we mean its l-dimensional interior. The convex hull of a
subset of [v0 , ..., vl] containing m+1�l+1 elements is an m-face of {.
Thus, an m-face is itself an m-simplex. An (l&1)-face of { is also called a
facet of {, and any 1-face of { is also called an edge of {. Note that the only
l-face of { is { itself, and the vertices of { are its 0-faces. (We identify a
vertex v and its convex hull [v].)

Denote by Tl the set of all l-faces of the simplices in 2 (l=0, ..., n&1)
and set

T := .
n

l=0

Tl ,

where Tn :=2. We will also use notation V :=T0 , E :=T1 and F :=Tn&1

for the sets of all vertices, edges and facets of 2, respectively. The star of
a simplex { # T, denoted by star ({), is the union of all n-simplices T # 2
containing {, i.e.,

star({)= .

{/T
T # 2

T.

In particular, star(T )=T for each T # 2.
Furthermore, given { # Tl , l�n&1, we denote by ({) the linear

manifold in Rn parallel to the affine span aff({) of { and by ({)= the
orthogonal complement of ({) in Rn. Note that dim({)==n&l. In
particular, (v)==Rn for all v # V.

Let {=(v0 , ..., vl) # Tl , l�n&1, and let w # V be such that {$=
({, w) :=(v0 , ..., vl , w) is in Tl+1 . Since dim({)==n&l and dim({$)=
l+1, the linear manifold ({)= & ({$) has dimension 1. Moreover, since
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aff({) has codimension 1 as an affine subspace of aff({$), it defines two half-
spaces of aff({$), and there is a unique unit vector in ({)= & ({$) pointing
into the half-space of aff({$) containing w. We denote this unit vector by

_{, w .

If v is a vertex in V, then _v, w is obviously the unit vector in the direction
of the edge (v, w). If w1 , ..., wm # V and {~ =({, w1 , ..., wm) is in Tl+m ,
l+m�n, then we set

_({, {~ ) :=(_{, w1
, ..., _{, wm

).

2.3. Nodal Functionals

Given _=(_1 , ..., _m) a linearly independent sequence of unit vectors in
Rn, and :=(:1 , ..., :m) # Zm

+ , let D:
_ denote the partial derivative

D:
_ :=D:1

_1
} } } D:m

_m
,

where D_i
is the derivative in the direction _i ,

D_i
f (x) := lim

t � +0
t&1[ f (x+_i t)& f (x)],

for a differentiable f. By a nodal functional we mean any linear functional
on Sr

d (2) of the form '=$x D:
_ , where x is a point in 0, and $x is the

point-evaluation functional,

$x f := f (x).

We denote by

q(')=|:| := :
m

i=1

:i�r (2.5)

the order of '. Given s # Sr
d (2), the partial derivative D:

_s is continuous
everywhere in 0 if |:|�r, and piecewise continuous if |:|>r. In this last
case we have to choose an n-simplex T # 2, with x # T, and apply our func-
tional to s|T . The following situation is of special interest since, for it, a
natural choice for T exists. Assume that for some { # T we have x # { and
x+=_i # {, i=1, ..., m, if =>0 is small enough. Then $x D:

_s|T is the same
for all T # 2 such that {/T. We will choose T in this way whenever the
above situation occurs.

We will often use the following simple lemma.
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Lemma 2.6. Let L be a linear manifold in Rn, dim L=m�n, and let
_=(_1 , ..., _m) be a basis of L, where _1 , ..., _m # L are unit vectors. Suppose
that all components of _~ =(_~ 1 , ..., _~ m) are also some unit vectors in L. Then
for any : # Zm there exist real coefficients c; such that

D:
_~ = :

|;|=|:|
; # Zm

c; D;
_ .

Proof. Since _ is a basis for L, there are real coefficients aij such that

_~ i= :
m

j=1

aij_j i=1, ..., m.

Therefore,

D_~ i
= :

m

j=1

aij D_j
i=1, ..., m,

and

D:
_~ =\ :

m

j=1

a1j D_j+
:1

} } } \ :
m

j=1

amj D_j+
:m

,

where :=(:1 , ..., :m). K

2.4. Polynomial Unisolvent Sets

Let { be a non-degenerate l-simplex in Rn. We set

6 l
m({) :=[ p| { : p # 6 n

m], m=&1, 0, 1, 2, ...,

where 6 n
m is the space of all n-variate polynomials of total degree at most

m, m=0, 1, 2, ..., and 6 n
&1 :=[0]. By a change of variables, the elements

of 6 l
m({) may be considered as l-variate polynomials of total degree at

most m defined on {. In particular, dim 6 l
m({)=dim 6 l

m=( l+m
m ), m=0, 1,

2, ..., dim 6 l
&1({)=0. A finite set 5/{ is said to be 6 l

m-unisolvent if for
any real a! , ! # 5, there exists a unique p # 6 l

m({) such that p(!)=a! for all
! # 5. Obviously, the number of elements in any 6 l

m-unisolvent set is equal
to the dimension of 6 l

m .
As a well known example of a 6 l

m -unisolvent set we mention the set of
( l+m

l ) uniformly distributed points in the l-simplex {=(v0 , ..., vl) ,

5� m({) :={! : !=
u0v0+ } } } +ulvl

m
, where i0+ } } } +il=m= . (2.6)
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Moreover, its subsets

5� k
m({) :=[! # 5� m({) : ij>k, j=0, ..., l], 0�k�

m&l

l+1
, (2.7)

are examples of 6 l
m&(k+1)(l+1) -unisolvent sets in the interior of {.

The following technical lemma will be very useful later.

Lemma 2.7. Let p�6 l
m({) and 0�k� m&l

l+1 . Suppose that

(1) for each facet {$ of {,

$x Dk$
_({$, {)p=0, all x # {$, k$=0, ..., k,

(2) for some 6 l
m&(k+1)(l+1) -unisolvent set 5 in the interior of {,

$! p=0, all ! # 5.

Then p=0.

Proof. Let {1 , ..., {l+1 be all facets of {. For each {i , let pi be a linear
n-variate polynomial such that pi | {i

=0 and pi | { {0. It follows from (1)
that

p= p~ `
l+1

i=1

( p i | {)k+1,

where p~ is a polynomial in 6 l
m&(k+1)(l+1)({). Since p i , i=1, ..., l+1, do

not vanish in the interior of {, (2) implies that p~ (!)=0 for all ! # 5.
Therefore, p~ =0, and hence p=0. K

3. A NODAL DETERMINING SET FOR Sr
d (2)

Suppose r�1 and d�r2n+1. We now associate with each { # T a set
N{ of nodal functionals on Sr

d (2). First, let v be a vertex in V=T0 . For
each n-simplex T # 2 containing v we define

Nv, q(T ) :=[$v D:
_(v, T ) : : # Zn

+ , |:|=q], 0�q�r2n&1,

Nv(T ) := .
r2n&1

q=0

Nv, q(T ).
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Moreover, we set

Nv, q := .

& # T
T # 2

Nv, q(T ), Nv := .
r2n&1

q=0

Nv, q= .

& # T
T # 2

Nv(T ).

Suppose now { # Tl for some l # [1, ..., n&1]. For each 0�q�r2n&l&1,
let 5{, q be a 6 l

+l, q
-unisolvent set in the interior of {, where

+l, q :=d&q&(r2n&l&q+1)(l+1). (3.1)

Given any n-simplex T # 2 containing {, we define for each ! # 5{, q ,

N{, q, !(T ) :=[$! D:
_({, T ) : : # Zn&l

+ , |:|=q].

Moreover, we set

N{(T ) := .
r2n&l&1

q=0

.
! # 5{, q

N{, q, !(T ), N{, q, ! := .

{/T
T # 2

N{, q, !(T ),

N{, q := .
! # 5{, q

N{, q, ! , N{ := .
r2n&l&1

q=0

N{, q= .

{/T
T # 2

N{(T ).

Finally, for each T # 2=Tn we define

NT :=[$! : ! # 5T],

where 5T is a 6 n
d&(r+1)(n+1) -unisolvent set in the interior of T.

Note that in general the sets N{, q, !(T ) are not mutually disjoint for dif-
ferent T containing {. For example, let {=(v0 , ..., vn&2) # Tn&2 , and sup-
pose that both T=({, u, w) and T� =({, u, w~ ) are in 2. Then the nodal
functional $! Dr+1

_{, u
belongs to N{, r+1, !(T ) & N{, r+1, !(T� ). On the other

hand, if an n-simplex T # 2 is fixed, then the sets N{, q, !(T ) are mutually
disjoint for all {, q, !.

Theorem 3.1. The set

N := .
{ # T

N{

is a determining set for Sr
d (2).
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Proof. Let s # Sr
d (2) satisfy 's=0 for all ' # N. We have to show that

s=0. To this end we choose an arbitrary T # 2 and show that s|T=0. For
each vertex v of T, the set

Nv(T )=[$v D:
_(v, T ) : : # Zn

+ , |:|�r2n&1]

is included in N. Since _(v, T ) is a basis of Rn, we have by Lemma 2.6,

$v D:
_s| T=0, all : # Zn

+ , |:|�r2n&1,

for any sequence _ of unit vectors.
For l=0, ..., n&1, we now show by induction that for each l-face { of

T, if the components of _ are some unit vectors in ({)=, then

$x D:
_ s| T=0, all x # {, : # Zn&l

+ , |:|�r2n&l&1. (3.2)

The validity of (3.2) for l=0 is shown above. Suppose 1�l�n&1. Let
: # Zn&l

+ , |:|=q, with 1�q�r2n&l&1. In view of Lemma 2.6, it suffices to
prove (3.2) for _=_({, T ). We have p :=D:

_({, T )s| T # 6 n
d&q and p| { #

6 l
d&q({). By the induction hypothesis, for each facet {$ of {,

$x Dq$
_({$, {) p| {=0, all x # {$, q$=0, ..., r2n&l&q.

Since the nodal functionals $! D:
_({, T ) , ! # 5{, q , are included in N{(T )/N,

we have in addition

$! p| {=0, all ! # 5{, q .

Since 5{, q is 6 l
+l, q

-unisolvent, Lemma 2.7 implies that p| {=0, which
confirms (3.2).

In particular, (3.2) holds for each facet F of T, i.e.,

$sDq
_(F, T ) s|T=0, all x # F, q=0, ..., r.

Since NT is included in N, we have in addition

$! s| T=0, all ! # 5T .

Since 5T is 6 n
d&(r+1)(n+1) -unisolvent, Lemma 2.7 implies that s|T=0,

which completes the proof. K

Theorem 3.2. For each T # 2, let

N(T ) :=NT _ .
n&1

l=0

.
{ # Tl(T )

N{(T ),
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where Tl(T ) denotes the set of all l-faces of T. Then N(T ) is a minimal
determining set for 6 n

d .

Proof. It is easy to see that the set of nodal functionals N(T ) is the
same, whatever the triangulation 2 containing T may be. If we take
2=[T], then obviously Sr

d (2)=6 n
d and N=N(T ). Therefore, N(T ) is

a determining set for 6 n
d by Theorem 3.1. It thus remains to show that

*N(T )=dim 6 n
d=( n+d

n ). We have

*N(T )=*NT+ :
v # T0(T )

*Nv(T )+ :
n&1

l=1

:
{ # Tl(T )

*N{(T ).

It is easy to see that

*NT=\n+d&(r+1)(n+1)
n + ,

*Nv(T )= :
r2n&1

q=0
\n&1+q

n&1 +=\n+r2n&1

n + , v # T0(T ),

*N{(T )= :
r2n&l&1

q=0
\l++l, q

l +\n&l&1+q
n&l&1 + ,

{ # Tl (T ), 1�l�n&1,

where +l, q is defined in (3.1).
We now consider the set

Z :=[: # Zn+1
+ : |:|=d].

Obviously, *Z=( n+d
n ). Therefore, the theorem will be established if we

show that

*Z=*N(T ). (3.3)

For any nonempty subset I of [1, ..., n+1], let

ZI :={: # Z : :
i # I

:i�d&r2n&l&1= , if l :=*I&1<n,

Z[1, ..., n+1] :=Z,
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and

Z� [i] :=Z[i] , i=1, ..., n+1,

Z� I :=ZI>.
i # I

ZI"[i] , *I�2.

Taking into account the assumption d�r2n+1, it is not difficult to see
that Z is a disjoint union of the sets Z� I . Hence,

*Z= :
n

l=0

:
*I=l+1

*Z� I .

We have

Z� [1, ..., n+1]={: # Z : :
n+1

i=1
i{j

:i<d&r, j=1, ..., n+1=
=[: # Zn+1

+ : |:|=d, : j�r+1, j=1, ..., n+1],

and it follows that

*Z� [1, ..., n+1]=\n+d&(r+1)(n+1)
n +=*NT .

Furthermore, for each i=1, ..., n+1, we have

Z� [i]=[: # Zn+1
+ : |:|=d, :i�d&r2n&1],

so that *Z� [i]=( n+r2n&1

n ), and hence

:
n+1

i=1

*Z� [i]=(n+1) \n+r2n&1

n += :
v # T0(T )

*Nv(T ).

Let now I/[1, ..., n+1], l :=*I&1<n. Then

Z� I ={: # Z : :
i # I

:i�d&r2n&l&1, :
i # I"[ j]

:i<d&r2n&l, j # I=
= .

r2n&l&1

q=0
{: # Z : :

i # I

:i=d&q, :j�r2n&l&q+1, j # I= .
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A standard combinatorial argument shows that the cardinality of the set

{: # Z : :
i # I

:i=d&q, : j�r2n&l&q+1, j # I=
is ( l++l, q

l )( n&l&1+q
n&l&1 ). Since the number of subsets I of [1, ..., n+1] consist-

ing of l+1 elements is equal to ( n+1
l+1)=*Tl(T ), we conclude that

:
*I=l+1

*Z� I = :
{ # Tl(T )

*N{(T ), l=1, ..., n&1.

Thus, (3.3) holds, and the proof is complete. K

Theorem 3.2 shows that the set N(T ) defines a Hermite interpolation
operator HT : C r2n&1

(T ) � 6 n
d as follows. Given f # C r2n&1

(T ), let HT f be
the unique polynomial in 6 n

d satisfying

'HT f ='f, all ' # N(T ). (3.4)

Obviously, this is a standard finite-element interpolation scheme, see e.g.
[24, 30].

The following estimation of the norm of HT f in the case of uniformly
distributed points easily follows from the general results given in [13]; see
also the proof of Lemma 3.9 in [16].

Lemma 3.3. Choose

5{, q=5� r2n&l&q
d&q , all { # Tl , 1�l�n&1, 0�q�r2n&l&1,

(3.5)
5T =5� r

d , all T # Tn ,

where 5� k
m are defined in (2.7). Then

&HT f &L�(T )�K max
' # N(T )

hq(')
T |'f | , (3.6)

where hT is the diameter of T, q(') is the order of the nodal functional ', and
K is a constant depending only on n, r and d.

4. SMOOTHNESS CONDITIONS

As shown in the previous section, N/Sr
d (2)* is a determining set for

Sr
d (2). Therefore, N is a spanning set for Sr

d (2)*. However, as we will
see, there are some linear dependencies between the elements of N, called
nodal smoothness conditions. Our next task is to describe these conditions.
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Let { # Tl for some 0�l�n&1, and let F=({, u1 , ..., un&l&1) # Tn&1

be an interior facet of 2 attached to {. Then there are exactly two
n-simplices T1 , T2 # 2 sharing the facet F. Let T1=(F, un&l) ,
T2=(F, w). Since the components of

_({, T1)=(_{, u1
, ..., _{, un&l

)

form a basis for ({)=, and since _{, w also lies in ({)=, there exists + # Rn&l,
+=(+1 , ..., +n&l), such that

_{, w= :
n&l

i=1

+i_{, ui
.

Lemma 4.1. If s # Sr
d (2), then for all ! # {, : # Zn&l&1

+ and 0�r$�r,

$! D:
_({, F ) Dr$

_{, w
s= :

|;|=r$
; # Z+

n&l \
|;|
; + +; $! D:

_({, F ) D;
_({, T1) s, (4.1)

where ( |;|
; ) :=|;|!�;1 ! } } } ;n&l!, +; :=+;1

1 } } } +;n&l
n&l .

Proof. Let p1 :=s| T1
, p2 :=s|T2

and _i :=_{, ui
, i=1, ..., n&l. We have

$! D:
_({, F ) Dr$

_{, w
p1=$! D:

_({, F ) \ :
n&l

i=1

+i D_i+
r$

p1

=$! D:
_({, F ) \ :

|;|=r$
; # Z +

n&l \
|;|
; + +; D;1

_1
} } } D;n&l

_n&l + p1

= :

|;|=r$
; # Z+

n&l \
|;|
; + +; $! D:

_({, F ) D;
_({, T1)p1 .

Since s # C r(T1 _ T2) and r$�r,

Dr$
_{, w

p1(x)=Dr$
_{, w

p2(x), all x # F=T1 & T2 .

Therefore,

$! D:
_({, F ) Dr$

_{, w
p1=$! D:

_({, F) D r$
_{, w

p2 ,

for all ! # F, in particular for ! # {. Thus,

$! D:
_({, F) Dr$

_{, w
p2= :

|;|=r$
; # Z +

n&l \
|;|
; + +; $! D:

_({, F ) D;
_({, T1)p1 . (4.2)
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Finally, we note that

D:
_({, F ) D r$

_{, w
=D#

_({, T2) , D:
_({, F ) D;

_({, T1)=D#~
_({, T1) , (4.3)

where #=(:1 , ..., :n&l&1 , r$), #~ =(:1+;1 , ..., :n&l&1+;n&l&1 , ;n&l), and
the observation that by definition

$! D#
_({, T2) s=$! D#

_({, T2) p2 , $! D#~
_({, T1) s=$! D#~

_({, T1)p1

(see Section 2.3) completes the proof. K

Remark 4.2. Lemma 4.1 shows that the condition (4.2) holds for all
! # {, : # Zn&l

+ and 0�r$�r if the two polynomials p1 and p2 defined on
T1 and T2 , respectively, join together with C r-smoothness across
F=T1 & T2 . It is not difficult to see that the converse is also true. Note
that for { # T0 , Lemma 4.1 as well as its converse were given (in a slightly
different form) in Theorem 4.1.2 of [11], and (in the bivariate case)
in [16].

We now concentrate on the conditions (4.1) that involve the nodal func-
tionals in the set N defined in Section 3. Namely, Lemma 4.1 implies that
the following linear relations between the elements of N hold:

(1) given v # T0 and 0�q�r2n&1, the system Rv, q of linear conditions

$v D:
_(v, F ) Dr$

_v, w
= :

|;|=r$
; # Z

n
+
\ |;|

; + +; $v D:
_(v, F ) D;

_(v, T1) , (4.4)

for all 0�r$�min[r, q], all : # Zn&1
+ , with |:|=q&r$, and all interior

facets F # Tn&1 such that v # F,

(2) given { # Tl (where 1�l�n&2), 0�q�r2n&l&1, and ! # 5{, q ,
the system R{, q, ! of linear conditions

$! D:
_({, F ) Dr$

_{, w
= :

|;|=r$
; # Z +

n&l \
|;|
; + +; $! D:

_({, F ) D;
_({, T1) , (4.5)

for all 0�r$�min[r, q], all : # Zn&l&1
+ , with |:|=q&r$, and all interior

facets F # Tn&1 such that {/F, and

(3) given an interior facet F # Tn&1 , 0�q�r, and ! # 5F, q , the linear
condition RF, q, ! ,

$! Dq
_F, w

=(&1)q $! Dq
_(F, T1) . (4.6)

(Here and above w, T1 and +i correspond to a particular F and are defined
as in Lemma 4.1.)
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Remark 4.3. In view of (4.3) it is easy to see that the smoothness condi-
tions in Rv, q , R{, q, ! or RF, q, ! involve only the nodal functionals in Nv, q ,
N{, q, ! or NF, q, ! , respectively. (See the definition of the sets of nodal
functionals Nv, q and N{, q, ! in Section 3.)

Let

Rv := .
r2n&1

q=0

Rv, q , v # T0 ,

R{ := .
r2n&l&1

q=0

R{, q R{, q := .
! # 5{, q

R{, q, ! , { # Tl , 1�l�n&1.

(4.7)

Theorem 4.4. The set

R := .
{ # T"Tn

R{ (4.8)

is a complete system of linear relations for N over Sr
d (2).

Proof. By Theorem 3.1, N is a determining set for Sr
d (2). Suppose the

system R is written as

:
j # J

ci, j'j=0, i # I,

where I, J are some index sets, ['j] j # J=N, and ci, j real coefficients. Let
aj , j # J, be any real numbers satisfying

:
j # J

ci, jaj=0, i # I.

According to Definition 2.2, we have to show that there exists a spline
s # Sr

d (2) such that 'j s=aj for all j # J. We first construct the polynomial
pieces of s, pT=s|T , T # 2, as follows. By Theorem 3.2, N(T ) is a minimal
determining set for 6 n

d . We define pT to be the unique polynomial in 6 n
d

such that

'j pT=a j , all ' j # N(T ).

We thus have to prove that pT , T # 2, join together with C r-smoothness.
To this end it suffices to consider two n-simplices T1 , T2 # 2 sharing a facet
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F # Tn&1 and show that the two polynomials p1 :=pT1
and p2 :=pT2

join
with C r-smoothness across F. This, in turn, will follow if we show that

$x Dr$
_F, w

( p2& p1)=0, all x # F, r$=0, ..., r. (4.9)

where w is the vertex of T2 not lying in F. (That is, T2=(F, w) .)
We first prove by induction on l that for each l-face { of F,

l=0, ..., n&2, and for all r$=0, ..., r, and : # Zn&l&1, with |:|�r2n&l&1&r$,

$x D:
_({, F ) Dr$

_{, w
( p2& p1)=0, all x # {. (4.10)

Let l=0, and let v be a vertex of F. Given r$=0, ..., r and : # Zn&1, with
|:|�r2n&1&r$, the functional ' j0

:=$v D:
_(v, F) D r$

_v, w
is in N(T2). Hence,

'j0
p2=aj0

. Let us compute 'j0
p1 . We set ' j;

:=$v D:
_(v, F ) D;

_(v, T1) # N(T1),
|;|=r$. By (4.4), the equation

'j0
& :

|;|=r$
; # Z

n
+
\ |;|

; + +;'j;
=0

belongs to R. Therefore,

aj0
& :

|;|=r$
; # Z

n
+
\ |;|

; + +;aj;
=0.

On the other hand, since 'j;
# N(T1), we have 'j;

p1=aj;
, and it follows

that

'j0
p1= :

|;|=r$
; # Z

n
+
\ |;|

; + +;'j;
p1= :

|;|=r$
; # Z

n
+
\ |;|

; + +;aj;
=aj0

.

Thus, 'j0
( p2& p1)=0, which confirms (4.10) for l=0.

Suppose 1�l�n&2, and let { be and l-face of F. Given r$=0, ..., r and
: # Zn&l&1, with |:|�r2n&l&1&r$, consider

p :=D:
_({, F ) D r$

_{, w
( p2& p1)| { # 6l

d&q ({),

where q :=|:|+r$. Let us show that for each facet {$ of {,

$x Dq$
_({$, {)p=0, all x # {$, q$=0, ..., r2n&l&q. (4.11)
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Since the components of _({$, {) and _({, F ) form a basis for ({$)= & (F ),
we have by Lemma 2.6, that

Dq$
_({$, {) D:

_({, F )= :

|#|=|:| +q$
# # Zn&l

c# D#
_({$, F ) .

Moreover, since _{, w # ({)=/({$)=,

Dr$
_{, w

= :
r$

r~ =0

:

|#| =r$&r~
# # Zn&l

c~ #, r~ D#
_({$, F ) Dr~

_{$, w
.

Therefore, we have for x # {$,

$x Dq$
_({$, {) p=$x Dq$

_({$, {) D:
_({, F ) D r$

_{, w
( p2& p1)

= :
r$

r~ =0

:

|#|=|:|+q$
# # Zn&l

:

|#~ |=r$&r~
#~ # Zn&l

c#c~ #~ , r~ $x D#+#~
_({$, F ) D r~

_{$, w
( p2& p1).

By the induction hypothesis, every term in this last sum is zero (since
r~ �r and |#|+|#~ |+r~ =|:|+q$+r$=q+q$�r2n&l), and (4.11) follows. We
show now that

$! p=0, all ! # 5{, q , (4.12)

where 5{, q is a 6 l
+l, q

-unisolvent set in the interior of { as defined in
Section 3. Let ! # 5{, q be given. Similar to the proof in case l=0, we set
'j0

:=$! D:
_({, F ) Dr$

_{, w
# N(T2), 'j;

:=$! D:
_({, f ) D:

_({, T1) # N(T1), |;|=r$.
By (4.5), the equation

'j0
& :

|;|=r$
; # Z+

n&l \
|;|
; + +;' j;

=0

belongs to R. Hence, we get

'j0
p1= :

|;|=r$
; # Z+

n&l \
|;|
; + +;'j;

p1= :

|;| =r$
; # Z+

n&l \
|;|
; + +;aj;

=aj0
='j0

p2 ,

and (4.12) is proved. In view of (4.11) and (4.12), we conclude by
Lemma 2.7 that p=0, which establishes (4.10).
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To prove (4.9) for any given r$=0, ..., r, we set

p :=Dr$
_F, w

( p2& p1)| F # 6 n&1
d&r$ .

Analysis similar to the above shows that by (4.10) it follows that for each
facet { of F,

$x Dq
_({, F )p=0, all x # {, q=0, ..., 2r&r$.

Furthermore, given ! # 5F, x$ , the nodal functionals 'j1
:=$! Dr$

_(F, T1) and
'j2

:=$! Dr$
_F, w

are in N(T1) and N(T2), respectively. By (4.6),

$! D r$
_F, w

=(&1)r$ $! D r$
_(F, T1) ,

and hence

$! p='j2
p2&(&1)r$ 'j1

p1=a j2
&(&1)r$ aj1

=0.

Thus, Lemma 2.7 implies that p=0, which establishes (4.9) and completes
the proof of the theorem. K

5. CONSTRUCTION OF A LOCAL BASIS FOR Sr
d (2)

Let d�r2n+1. Since N is a determining set for Sr
d (2) by Theorem 3.1,

and R is a complete system of linear relations for N over Sr
d (2) by

Theorem 4.4, Algorithm 2.4 can be applied to construct a basis [s~ 1 , ..., s~ m]
for Sr

d (2). To this end we only need to choose a basis [a[1], ..., a[m]] for
the null space N(C) of the corresponding matrix C. In this section we will
show how to choose the basis for N(C) so that the resulting basis for
Sr

d (2) is local as defined below.
Let v be a vertex of 2. We set star1(v) :=star(v), and define star#(v),

#�2, recursively as the union of the stars of the vertices in T0 & star#&1(v).

Definition 5.1. Let S be a linear subspace of Sr
d (2). A basis

[s1 , ..., sm] for S is called local (or #-local) if there is an integer # such that
for each k=1, ..., m, supp sk /star#(vk), for some vertex vk of 2, and the
dual functionals *1 , ..., *m , defined by (2.1), can be localized in the same
sets star#(v1), ..., star#(vk), i.e., for each k=1, ..., m, *k s=0 for all s # S

satisfying s| star#(vk)=0.

We say that an algorithm produces local bases if there exists an absolute
(integer) constant # such that any basis constructed by that algorithm is at
most #-local.
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The key observation for our construction is that the matrix C of the
system R has a block diagonal structure. More precisely, by Remark 4.3 we
have

C=[C� O], (5.1)

C� =diag(C{){ # T"Tn
,

where C{ is the matrix of the system R{ defined in (4.7), and O is the zero
matrix corresponding to the nodal functionals in NT , T # Tn , not involved
in any smoothness conditions. Moreover, each matrix C{ itself is block
diagonal. Namely,

C{=diag(C{, q)q=0, ..., r2n&l&1 , { # Tl , 0�l�n&1, (5.2)

where C{, q is the matrix of the system R{, q defined in (4.4)�(4.7). If
1�l�n&1, then the matrix C{, q is again block diagonal,

C{, q=diag(C{, q, !)! # 5{, q
,

with C{, q, ! being the matrix of the system R{, q, ! . By Lemma 2.3, we have

dim Sr
d (2)=*N& :

{ # T"Tn

rank C{

=*N& :
v # T0

:
r2n&1

q=0

rank Cv, q

& :
n&1

l=1

:
{ # Tl

:
r2n&l&1

q=0

:
! # 5{, q

rank C{, q, ! . (5.3)

Remark 5.2. The formula (5.3) leads to the efficient computation of the
dimension of the space Sr

d (2) by applying to the small matrices Cv, q and
C{, q, ! the standard numerical algorithms of rank determination (see e.g.
[29]).

In view of (5.1) and (5.2), N(C� ) is an (outer) direct sum of N(C{, q),
q=0, ..., r2n&l&1, { # Tl , 0�l�n&1. Hence, if we know bases for
all N(C{, q), then we can combine them into a basis for N(C� ) that
trivially extends to a basis for N(C). Let N{, q=['[{, q]

j ]j # J{, q
and C{, q=

(c[{, q]
i, j ) i # I{, q , j # J{, q

, so that R{, q has the form

:
j # J{, q

c[{, q]
i, j '[{, q]

j =0, i # I{, q .
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For each { # Tl , 0�l�n&1, and q=0, ..., r2n&l&1, suppose

a[{, q, k]=(a[{, q, k]
j ) j # J{, q

, k=1, ..., m{, q , (5.4)

form a basis for N(C{, q). In addition, for each T # Tn , let a[T, 0, k]=
(a[T, 0, k]

j ) j # JT, 0
, k=1, ..., mT , be any basis of RmT, where mT=*JT, 0=

*NT=*5T . We define a~ [{, q, k]=(a~ [{, q, k]
j ) j # J , with J=�{, q J{, q , by

a~ [{, q, k]
j :={a[{, q, k]

j ,
0,

if j # J{, q ,
otherwise.

Then the vectors a~ [{, q, k], k=1, ..., m{, q , q=0, ..., ql , { # Tl , 0�l�n,
where

ql={r2n&l&1,
0,

if 0�l�n&1,
if l=n,

(5.5)

obviously form a basis for N(C). The corresponding basis

s~ [{, q, k], k=1, ..., m{, q , q=0, ..., ql , { # Tl , 0�l�n, (5.6)

for Sr
d (2) produced by Algorithm 2.4 satisfies

'[{, q]
j s~ [{, q, k]=a[{, q, k]

j , j # J{, q , (5.7)

's~ [{, q, k]=0, all ' # N"N{, q .

Denote by

*� [{, q, k], k=1, ..., m{, q , q=0, ..., ql , { # Tl , 0�l�n,

(5.8)

the dual basis for Sr
d (2)* determined by the duality condition

*� [{, q, k]s~ [{$, q$, k$]={1,
0,

if {={$, q=q$ and k=k$,
otherwise.

Theorem 5.3. The basis (5.6) for Sr
d (2), where d�r2n+1, is local.

Moreover,

supp s~ [{, q, k]/star({), (5.9)

and the dual basis (5.8) satisfies

*� [{, q, k]s=0 for all s # Sr
d (2) such that s| star({)=0. (5.10)
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Proof. By (5.7) we have 's~ [{, q, k]=0 for all ' # N"N{, q . Since N{, q &

N(T ){< only if {/T, (5.9) follows from the fact that N(T ) is a deter-
mining set for 6 n

d , see Theorem 3.2. To show (5.10), we consider the matrix
A with columns

a~ [{, q, k], k=1, ..., m{, q , q=0, ..., ql , { # Tl , 0�l�n.

This matrix is block diagonal,

A=diag(A{){ # T ,

A{=diag(A{, q)q=0, ..., ql
, { # Tl , 0�l�n,

where A{, q :=(a[{, q, k]
j )j # J{, q, k=1, ..., m{, q

. Let B{, q be a left inverse of A{, q .
Then B :=diag(B{){ # T , with B{=diag(B{, q)q=0, ..., ql

, { # Tl , 0�l�n, is a
left inverse of A. Hence, by Lemma 2.5, *� [{, q, k] is a linear combination of
'[{, q]

j , j # J{, q . This implies (5.10) since for every ' # N{, q we obviously
have 's=0 if s | star({)=0. K

Remark 5.4. A similar analysis of the space Sr
d (2), d�r2n+1, was

done in [2] by using Bernstein�Be� zier smoothness conditions [5].
However, the existence of a local basis for Sr

d (2) was shown in [2] only
for n�3. The main advantage of the nodal techniques used here is that the
matrix C� in (5.1) is block diagonal, while the matrix of Bernstein�Be� zier
smoothness conditions is block triangular (see [6]).

6. A STABLE LOCAL BASIS FOR Sr
d (2)

In this section we show that if the sets 5{, q and 5T as well as the bases
(5.4) for N(C{, q) are properly chosen, then an appropriately renormalized
version of the local basis for S r

d (2) constructed above is in addition stable.
Let us denote by |2 the shape regularity constant of the triangulation 2,

|2 :=max
T # 2

hT

\T
,

where hT and \T are the diameter of T and the diameter of its inscribed
sphere, respectively. Given M=�T # 2� T, where 2� /2, we denote by |M|
the n-dimensional volume of M.
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Definition 6.1. Let S be a linear subspace of Sr
d (2). We say that a

basis [s~ 1 , ..., s~ m] for S is Lp -stable if there exist constants K1 , K2 depending
only on n, r, d and |2 , such that for any :=(:1 , ..., :m) # Rm,

K1 &:&lp
�" :

m

k=1

:k s~ k"Lp(0)

�K2 &:&lp
.

To establish stability of a local basis it seems most convenient to use the
following general lemma; see also [23].

Lemma 6.2. Let [s1 , ..., sm] be a #-local basis for S, and let [*1 , ..., *m]
/S* be its dual basis. Suppose that

&sk&L�(0)�C1 , k=1, ..., m, (6.1)

and

|*k s|�C2 &s&L�(star #(vk)) , all s # S, k=1, ..., m, (6.2)

where supp sk /star#(vk) as in Definition 5.1. Then for any :=(:1 , ..., :m) # Rm,

K1C &1
2 &:&lp

�" :
m

k=1

:k
sk

|supp sk |1�p"Lp(0)

�K2C1 &:&lp
, 1� p��,

(6.3)

where K1 , K2 are some constants depending only on n, r, d, # and |2 .

Proof. Let s=�m
k=1 :k(sk�|supp sk |1�p). We first prove the upper bound

in (6.3). Given an n-simplex T # 2, we have by (6.1)

&s|T&Lp(T )�C1(*7T)1&1�p {\ :
k # 7T

|:k | p+
1�p

, if 1�p<�,

max
k # 7T

|:k | , if p=�,

where

7T :=[k : T/supp sk]. (6.4)

As in the bivariate case (see Lemmas 3.1 and 3.2 in [23]), it is not difficult
to show that

*[T # 2 : T/star#(vk)]�K� 1 (6.5)
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and

max { |star#(vk)|
|T |

: T/star#(vk)=�K� 2 , (6.6)

where K� 1 , K� 2 are some constants depending only on n, # and |2 . Hence,
for 1� p<� we have

&s& p
Lp(0)= :

T # 2

&s|T & p
Lp(T )�K� 1 C p

1(*7T) p&1 &:& p
lp

,

which shows that the upper bound will be established for all 1�p�� if
we prove that *7T is bounded by a constant depending only on n, r, d,
# and |2 . To this end we note that since the basis [s1 , ..., sm] is #-local,
supp sk /star2#(v), for all k # 7T , where v is any vertex of T. Therefore, the
set [sk : k # 7T] is linearly independent on star2#(v), and its cardinality
*7T does not exceed the dimension of the space of all piecewise polynomials
of degree d on star2#(v), i.e., *7T�N( n+d

n ), where N is the number of
n-simplices of 2 lying in star2#(v). By (6.5), N is bounded by a constant
depending only on n, # and |2 , and the assertion follows.

To establish the lower bound in (6.3), we obtain by (6.2),

|:k |=|supp sk |1�p |*ks|�C2 |supp sk |1�p &s&L�(star #(vk)) , k=1, ..., m.

Since &s&L�(star #(vk))�&s&L�(0) , this completes the proof in the case p=�.
Suppose 1�p<�. By a Nikolskii-type inequality, see e.g. [27, p. 56], for
some n-simplex Tk /star#(vk),

&s&L�(star #(vk))=&s|Tk
&L�(Tk)�K� 3 |Tk |&1�p &s|Tk

&Lp(Tk) ,

where K� 3 is a constant depending only on n and d. Since supp sk /
star#(vk), we have by (6.6),

|supp sk |
|Tk |

�K� 2 .

Therefore,

:
m

k=1

|:k | p�K� 2(K� 3C2) p :
m

k=1
|

Tk

|s| p.
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We now have to bound the number of appearances of a given n-simplex Tk

on the right-hand side of the above inequality. If Tk1
=Tk2

, then star#(vk1
)

& star#(vk2
){<. Hence, supp sk2

/star3#(vk1
). Thus, for all k such that

Tk=Tk1
,

supp sk /star3#(vk1
).

The set [sk : Tk=Tk1
] is linearly independent on star3#(vk1

), and it can be
shown as above that its cardinality is bounded by a constant K� 4 depending
only on n, # and |2 . Therefore,

:
m

k=1
|

Tk

|s| p�K� 4 |
0

|s| p,

which completes the proof. K

We are ready to formulate our main result about stability of the local
basis constructed in Section 5. For each { # T, denote by h{ the diameter
of the set star({). (This is compatible with the above notation hT for
T # Tn=2 since star(T )=T.)

Theorem 6.3. Suppose that

(1) every 5{, q , q=0, ..., ql , { # Tl , 1�l�n (where 5T, 0 :=5T if
T # Tn), is chosen to be the set of uniformly distributed points in the interior
of {, as defined in (3.5); and

(2) for each q=0, ..., ql and { # Tl , 0�l�n, the vectors

a[{, q, k]=(a[{, q, k]
j ) j # J{, q

, k=1, ..., m{, q , (6.7)

form an orthonormal basis for N(C{, q).

Let s~ [{, q, k] be the local basis functions for Sr
d (2), d�r2n+1, constructed

as in Section 5. Then for every 1� p��, the splines

h&q
{ |star({)| &1�p s~ [{, q, k], k=1, ..., m{, q ,

q=0, ..., ql , { # Tl , 0�l�n,

form an Lp -stable local basis for Sr
d (2).

Proof. As shown in Section 5, the splines s~ [{, q, k] are 1-local, and
supp s~ [{, q, k]/star({). By (6.6),

|supp s~ [{, q, k]|�|star({)|�K� 2 |supp s~ [{, q, k]|,
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where K� 2 depends only on n and |2 . Hence, in view of Lemma 6.2, the
theorem will be established once we prove that

&s~ [{, q, k]&L�(0)�C1hq
{ , (6.8)

and

|*� [{, q, k]s|�C2h&q
{ &s&L�(star({)) , all s # Sr

d (2), (6.9)

where the constants C1 , C2 depend only on n, r, d and |2 .
We first show (6.8). Since supp s~ [{, q, k]/star({), we have &s~ [{, q, k]&L�(0)

=&s~ [{, q, k]&L�(star({)) . Let T be an n-simplex in star({), and let HT be the
Hermite interpolation operator defined in (3.4). Since s~ [{, q, k]| T=
HTs~ [{, q, k]|T , we have by Lemma 3.3,

&s~ [{, q, k]|T&L�(T )�K� 5 max
' # N(T )

hq(')
T |'s~ [{, q, k]| ,

where K� 5 depends only on n, r and d. Now, by (5.7), 's~ [{, q, k]=0 for all
' # N(T )"N{, q , and

'[{, q]
j s~ [{, q, k]=a[{, q, k]

j , j # J{, q .

Since the vectors a[{, q, k], k=1, ..., m{, q , are orthonormal, we have
|a[{, q, k]

j |�1. Taking into account that q(')=q for all ' # N{, q , we arrive
at the estimate

&s~ [{, q, k]|T&L�(T )�K� 5hq
T�K� 5 hq

{ ,

and (6.8) is proved.
By our hypotheses, the columns of the matrix

A{, q=[a[{, q, k]
j ] j # J{, q , k=1, ..., m{, q

(6.10)

are orthonormal. Hence, AT
{, q is a left inverse of A{, q . By Lemma 2.5 and

the proof of Theorem 5.3, it follows that the dual functional *� [{, q, k] can be
computed as

*� [{, q, k]= :
j # J{, q

a[{, q, k]
j '[{, q]

j .

Therefore, for any s # Sr
d (2),

|*� [{, q, k]s|= } :
j # J{, q

a[{, q, k]
j '[{, q]

j s }�*J{, q max
j # J{, q

|'[{, q]
j s|.
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Given j # J{, q , let T be an n-simplex such that {/T and '[{, q]
j # N(T ).

Since '[{, q]
j is a nodal functional of order q, we have by Markov inequality

(see, e.g. [13]),

|'[{, q]
j s|=|'[{, q]

j s|T |�K� 6\&q
T &s|T&L�(T )�K� 6|q

2h&q
T &s&L�(star({)) ,

where K� 6 is a constant depending only on n and d. Since *J{, q=*N{, q

is bounded above by a constant depending only on n, r, d and |2 , the
estimate (6.9) follows, and the proof is complete. K

It is easy to see that Theorem 6.3 remains valid for any 5{, q such that the
Hermite interpolation operator defined by (3.4) satisfies (3.6), and for any
choice of the bases (6.7) for N(C{, q) such that the condition number of the
matrix (6.10) is bounded by a constant K depending only on n, r, d and
|2 ; compare [6]. However, there is a good reason to prefer, at least in
practice, an orthonormal basis for N(C{, q), as explained in the following
remark.

Remark 6.4. There is a numerically efficient way to compute an ortho-
normal basis a[{, q, k]=(a[{, q, k]

j ) j # J{, q
, k=1, ..., m{, q , for each N(C{, q), as

required in the above theorem. Namely, construct by an appropriate algo-
rithm a singular value decomposition C{, q=QLXQT

R of the matrix C{, q ,
where QL , QR are orthogonal matrices, and X=[D O], D=diag(_1 , ..., _p),
with _1� } } } �_p�0 being the singular values of C{, q , see e.g. [29].
Obviously, m{, q is equal to the number of zero columns in X (including the
columns corresponding to zero singular values). Hence, the columns of the
matrix [O Im{, q

]T constitute an orthonormal basis for N(X). Since
C{, q QR=QLX, the columns of A{, q=QR[O Im{, q

]T form the desired
orthonormal basis for N(C{, q). Thus, the matrix A{, q consists of the last
m{, q columns of QR .

7. SUPERSPLINE SPACES

In this section we construct stable local bases for the superspline sub-
spaces of Sr

d (2).

Definition 7.1. Let \=(\{){ # T"(Tn&1 _ Tn) be a sequence of integers
satisfying

r�\{�2n&l&1, { # Tl , 0�l�n&2. (7.1)
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The linear space of splines

Sr, \
d (2) :=[s # Sr

d (2) : s is \{ -times differentiable across {,

for all { # T"(Tn&1 _ Tn)] (7.2)

is called a superspline space.

In the limiting case \{=2n&l&1, { # T"(Tn&1 _ Tn), the superspline
spaces were introduced and studied in [8�11], see also [3, 4]. In par-
ticular, local bases for Sr, \

d (2), where \{=2n&l&1, were constructed in
[11] and [4]. For general \{ , but only in the bivariate case n=2, the
superspline spaces were explored in [22, 28] and, more recently, in [18, 19].

As we will see, our method of construction of a stable local basis can be
applied to the spaces (7.2). We first have to extend the system R of
smoothness conditions defined in (4.4)�(4.8) to a larger system R� , by
allowing a larger range of r$ in (4.4) and (4.5). Namely, we include in the
extended systems R� v, q and R� {, q, ! all conditions (4.4) and (4.5), respec-
tively, where 0�r$�min[\{ , q]. The systems RF, q, ! are not enlarged, i.e.,
we set R� F, q, !=RF, q, ! .

By the method of proof of Theorem 4.4 it is not difficult to establish the
following analogue of it.

Theorem 7.2. The set R� is a complete system of linear relations for N

over Sr, \
d (2).

It is easy to see that the matrix C� of the system R� possesses a block
diagonal structure similar to the structure of the matrix C considered in
Section 5. Therefore, all results about the dimension and the local bases
carry over to the superspline spaces. Thus, we have

dim Sr, \
d (2)=*N& :

{ # T"Tn

rank C� {

=*N& :
v # T0

:
r2n&1

q=0

rank C� v, q

& :
n&1

l=1

:
{ # Tl

:
r2n&l&1

q=0

:
! # 5{, q

rank C� {, q, ! ,

where C� { , C� v, q and C� {, q, ! are the appropriate blocks of C� . Define the
splines

ŝ[{, q, k], k=1, ..., m̂{, q , q=0, ..., ql , { # Tl , 0�l�n,

(7.4)
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by the condition

'[{, q]
j ŝ[{, q, k]=â[{, q, k]

j , j # J{, q ,
(7.5)

'ŝ[{, q, k]=0, all ' # N"N{, q ,

where

â[{, q, k]=(â[{, q, k]
j ) j # J{, q

, k=1, ..., m̂{, q , (7.6)

is a basis for N(C� {, q).

Theorem 7.3. The splines (7.4) form a local basis for Sr, \
d (2), where \

satisfies (7.1), and d�r2n+1. Moreover,

supp ŝ[{, q, k]/star({), (7.7)

and the dual basis (5.8) satisfies

*� [{, q, k]s=0 for all s # Sr
d (2) such that s| star({)=0. (7.8)

Since (7.4) is a local basis for Sr
d (2), Lemma 6.2 can be applied, and the

same argument as in the proof of Theorem 6.3 shows that the following
result holds.

Theorem 7.4. Suppose that

(1) every 5{, q , q=0, ..., ql , { # Tl , 1�l�n (where 5T, 0 :=5T if
T # Tn), is chosen to be the set of uniformly distributed points in the interior
of {, as defined in (3.5), and

(2) for each q=0, ..., ql and { # Tl , 0�l�n, vectors â[{, q, k]=
(â[{, q, k]

j ) j # J{, q
, k=1, ..., m{, q , form an orthonormal basis for N(C� {, q).

Let ŝ[{, q, k] be the local basis functions (7.4) for Sr, \
d (2), where \ satisfies

(7.1), and d�r2n+1. Then for every 1�p��, the splines

h&q
{ |star({)| &1�p ŝ[{, q, k], k=1, ..., m{, q ,

q=0, ..., ql , { # Tl , 0�l�n,

form an Lp -stable local basis for Sr, \
d (2).
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