Stable Local Bases for Multivariate Spline Spaces

Oleg Davydov
Mathematical Institute, Justus Liebig University, D-35392 Giessen, Germany
E-mail: oleg.davydov@math.uni-giessen.de
Communicated by Carl de Boor

Received March 14, 2000; accepted in revised form February 20, 2001; published online June 18, 2001

We present an algorithm for constructing stable local bases for the spaces $\mathscr{S}_{d}^{r}(\Delta)$ of multivariate polynomial splines of smoothness $r \geqslant 1$ and degree $d \geqslant r 2^{n}+1$ on an arbitrary triangulation Δ of a bounded polyhedral domain $\Omega \subset \mathbb{R}^{n}, n \geqslant 2$. © 2001 Academic Press

1. INTRODUCTION

Let Δ be a triangulation of a bounded polyhedral domain $\Omega \subset \mathbb{R}^{n}$, i.e., Δ is a finite set of non-degenerate n-simplices such that
(1) $\Omega=\bigcup_{T \in \Delta} T$;
(2) the interiors of the simplices in Δ are pairwise disjoint; and
(3) each facet of a simplex $T \in \Delta$ either lies on the boundary of Ω or is a common face of exactly two simplices in Δ.

Given $1 \leqslant r \leqslant d$, we consider the spline space

$$
\mathscr{S}_{d}^{r}(\Delta):=\left\{s \in C^{r}(\Omega):\left.s\right|_{T} \in \Pi_{d}^{n} \text { for all } n \text {-simplices } T \in \Delta\right\},
$$

where Π_{d}^{n} is the linear space of all n-variate polynomials of total degree at most d. It is well-known that $\operatorname{dim} \Pi_{d}^{n}=\binom{n+d}{n}$.

The application of splines in numerical computations requires efficient algorithms for constructing locally supported bases for the space $\mathscr{S}_{d}^{r}(\Delta)$ or its subspaces (such as finite element spaces). Moreover, if a local basis $\left\{s_{1}, \ldots, s_{m}\right\}$ for $\mathscr{S}_{d}^{r}(\Delta)$ is in addition stable, i.e., for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$,

$$
K_{1}\|\alpha\|_{\ell_{p}} \leqslant\left\|\sum_{k=1}^{m} \alpha_{k} s_{k}\right\|_{L_{p}(\Omega)} \leqslant K_{2}\|\alpha\|_{\ell_{p}},
$$

then a nested sequence of spaces

$$
\begin{equation*}
\mathscr{S}_{d}^{r}\left(\Delta_{1}\right) \subset \mathscr{S}_{d}^{r}\left(\Delta_{2}\right) \subset \cdots \subset \mathscr{S}_{d}^{r}\left(\Delta_{q}\right) \subset \cdots, \tag{1.1}
\end{equation*}
$$

may be used for designing multilevel methods of approximation on a bounded domain $\Omega \subset \mathbb{R}^{n}$, see e.g. [27] and references therein. In particular, the sequence (1.1) constitutes a multiresolution analysis on Ω if the maximal diameter of the triangles in Δ_{q} tends to zero as $q \rightarrow \infty$, and if the constants $0<K_{1}, K_{2}<\infty$ are independent of q. Note that the bases for the full space $\mathscr{S}_{d}^{r}(\Delta)$ are particularly interesting since $\mathscr{S}_{d}^{r}\left(\Delta_{q}\right) \subset \mathscr{S}_{d}^{r}\left(\Delta_{q+1}\right)$ if Δ_{q+1} is a refinement of Δ_{q}. (This is not the case for the finite element subspaces of $\mathscr{S}_{d}^{r}(\Delta)$ when $r \geqslant 1$; see [14, 25, 27].)

The famous B-splines constitute a stable locally supported basis for the space $\mathscr{S}_{d}^{r}(\Delta)$ in the one-dimensional case $n=1$ for all $d \geqslant r+1$. Moreover, the dual basis is also local and therefore provides a quasi-interpolant possessing optimal approximation order. There are well known constructions of local bases for $\mathscr{S}_{d}^{r}(\Delta)$ in the bivariate case $n=2$ for all $d \geqslant 3 r+2$, see [1, 21, 22, 26]. Stable local bases were constructed in [7,23] for some superspline subspaces, and in [17, 19] for the full bivariate spline spaces $\mathscr{S}_{d}^{r}(\Delta), d \geqslant 3 r+2$. In the trivariate case $n=3$ local bases are known for all $d \geqslant 8 r+1$ [2]. It was conjected in [2] that in general locally supported bases for $\mathscr{S}_{d}^{r}(\Delta)$ exist if $d \geqslant r\left(2^{n}-1\right)+n$.

The main objective of this paper is to construct stable locally supported bases for $\mathscr{S}_{d}^{r}(\Delta)$ and its superspline subspaces for all $n \geqslant 2$ and $r \geqslant 1$ provided $d \geqslant r 2^{n}+1$.

We make use of the nodal approach originated in the finite element method, see e.g. [12], and extended to the problems of spline spaces on general triangulations in [26] and more recently in [8-11, 15, 16, 17]. We show that in the multivariate case the nodal smoothness conditions can be better localized than usual Bernstein-Bézier smoothness conditions [5, 20]. The key point for our analysis is that certain matrices associated with the smoothness conditions have a block diagonal structure, which in the same time makes it possible to handle them efficiently in numerical computations, see Sections 5 and 6. In particular, the dimension of any given spline space $\mathscr{S}_{d}^{r}(\Delta), d \geqslant r 2^{n}+1$, can be efficiently computed by a formula obtained in Section 5.
The paper is organized as follows. In Section 2 we give some definitions and preliminary lemmas. The nodal functionals that we use are described in Section 3. Section 4 is devoted to a detailed analysis of nodal smoothness conditions. In Section 5 we construct local bases for $\mathscr{L}_{d}^{r}(\Delta), d \geqslant r 2^{n}+1$. In Section 6 we show how to achieve stability of these bases. Finally, in Section 7 we extend the results to the superspline subspaces of $\mathscr{S}_{d}^{r}(\Delta)$.

2. PRELIMINARIES

2.1. Bases and Minimal Determining Sets

It is obvious that the linear space $\mathscr{S}_{d}^{r}(\Delta)$ has finite dimension. In this subsection we consider an abstract finite-dimensional linear space \mathscr{S}, although in all our applications we have $\mathscr{S} \subset \mathscr{S}_{d}^{r}(\Delta)$.

Let \mathscr{S}^{*} denote, as usual, the dual space of linear functionals on \mathscr{S}. Given a basis $\left\{s_{j}\right\}_{i \in J}$ for \mathscr{S}, its dual basis is a basis $\left\{\lambda_{j}\right\}_{j \in J}$ for \mathscr{S}^{*} such that

$$
\begin{equation*}
\lambda_{i} s_{j}=\delta_{i, j}, \quad \text { all } \quad i, j \in J . \tag{2.1}
\end{equation*}
$$

It is easy to see that the dual basis $\left\{\lambda_{j}\right\}_{j \in J}$ is uniquely determined by $\left\{s_{j}\right\}_{j \in J}$, and vice versa, a basis $\left\{\lambda_{j}\right\}_{j \in J}$ for \mathscr{S}^{*} uniquely determines a basis $\left\{s_{j}\right\}_{j \in J}$ for \mathscr{S} satisfying (2.1).

In order to construct a basis $\left\{s_{j}\right\}_{j \in J}$ for a spline space \mathscr{S} it is often useful to find first a basis $\left\{\lambda_{j}\right\}_{j \in J}$ for \mathscr{S}^{*} and then determine $\left\{s_{j}\right\}_{j \in J}$ from the duality condition (2.1). Usually, the required basis for \mathscr{S}^{*} can be selected by an algorithm from a larger set $\Lambda \subset \mathscr{S}^{*}$ that spans \mathscr{S}^{*}. A common example of such a set Λ is the set of linear functionals picking off a coefficient of the Bernstein-Bézier representation of splines $s \in \mathscr{S}$, see e.g. [2]. Keeping in mind the tradition upheld in the literature on bivariate and multivariate splines, we will use the following terminology.

Definition 2.1. Any finite spanning set for \mathscr{S}^{*} is called a determining set for \mathscr{S}. Any basis for \mathscr{S}^{*} is called a minimal determining set for \mathscr{S}.

A standard argument in linear algebra shows that a set $\Lambda \subset \mathscr{S}^{*}$ is a determining set for \mathscr{S} if and only if $\lambda s=0$ for all $\lambda \in \Lambda$ implies $s=0$ whenever $s \in \mathscr{S}$. Moreover, a determining set Λ is a minimal determining set for \mathscr{S} if and only if no proper subset of Λ is a determining set. Since every linear functional on \mathscr{S} is well-defined on any subspace $\tilde{\mathscr{S}}$ of \mathscr{S}, it is easy to see that a determining set for \mathscr{S} is also a determining set for $\tilde{\mathscr{S}}$.

Suppose Λ is a determining set for \mathscr{S}. If Λ is not a minimal determining set for \mathscr{S}, then Λ is linearly dependent. It is particularly useful to know a complete system of linear relations for Λ.

Definition 2.2. Let $\Lambda=\left\{\lambda_{j}\right\}_{j \in J} \subset \mathscr{S}^{*}$ be a determining set for \mathscr{S}. Suppose that the functionals λ_{j} satisfy linear conditions

$$
\begin{equation*}
\sum_{j \in J} c_{i, j} \lambda_{j}=0, \quad i \in I, \tag{2.2}
\end{equation*}
$$

where $c_{i, j}$ are some real coefficients. We say that (2.2) is a complete system of linear relations for Λ over \mathscr{S} if for any $a=\left(a_{j}\right)_{j \in J}$, with $a_{j} \in \mathbb{R}, j \in J$, such that

$$
\begin{equation*}
\sum_{j \in J} c_{i, j} a_{j}=0, \quad i \in I, \tag{2.3}
\end{equation*}
$$

there exists an element $s \in \mathscr{S}$ such that $\lambda_{j} s=a_{j}$ for all $j \in J$.
Note that the element $s \in \mathscr{S}$ as above is necessarily unique. Indeed, if there are $s_{1}, s_{2} \in \mathscr{S}$ such that $\lambda_{j} s_{1}=\lambda_{j} s_{2}=a_{j}$ for all $j \in J$, then $\lambda_{j}\left(s_{1}-s_{2}\right)=0$, $j \in J$, which implies $s_{1}=s_{2}$ since Λ is a determining set for \mathscr{S}.

Let $C:=\left(c_{i, j}\right)_{i \in I, j \in J}$. Then (2.3) means that the vector a lies in the null space $N(C):=\left\{a: C a^{T}=0\right\}$ of the matrix C. Thus, there is a $1-1$ correspondence between elements $s \in \mathscr{S}$ and vectors $a \in N(C)$, where $a=\left(a_{j}\right)_{j \in J}$, $a_{j}=\lambda_{j} s$. In particular, the dimension of \mathscr{S} can be computed as follows.

Lemma 2.3. We have

$$
\begin{equation*}
\operatorname{dim} \mathscr{S}=\operatorname{dim} N(C)=\# \Lambda-\operatorname{rank} C \tag{2.4}
\end{equation*}
$$

Moreover, given a determining set Λ for \mathscr{S} and a complete system of linear relations for Λ over \mathscr{S} with matrix C, it is straightforward to construct a basis for \mathscr{S}; see also [6].

Algorithm 2.4. Suppose $\Lambda=\left\{\lambda_{j}\right\}_{j \in J} \subset \mathscr{S}^{*}$ is a determining set for \mathscr{S}, and (2.2) is a complete system of linear relations for Λ over \mathscr{S}. Let $a^{[k]}=\left(a_{j}^{[k]}\right)_{j \in J}, k=1, \ldots, m$, form a basis for the null space $N(C)$ of C. For each $k=1, \ldots, m$, construct the unique element $\tilde{s}_{k} \in \mathscr{S}$ satisfying $\lambda_{j} \tilde{s}_{k}=a_{j}^{[k]}$ for all $j \in J$. Then $\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{m}\right\}$ is a basis for \mathscr{S}.

It is not difficult to determine corresponding minimal determining set, i.e., the basis $\left\{\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m}\right\}$ for \mathscr{S}^{*} dual to $\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{m}\right\}$. Let

$$
A:=\left[a_{j}^{[k]}\right]_{j \in J, k=1, \ldots, m} .
$$

Since the columns $a^{[k]}$ of this matrix are linearly independent, A has full column rank. Hence, there exists a left inverse of A, i.e., a matrix

$$
B=\left[b_{k, j}\right]_{k=1, \ldots, m, j \in J}
$$

satisfying $B A=I_{m}$, where I_{m} is the $m \times m$ identity matrix. Note that B is not unique in general.

Lemma 2.5. The dual basis $\left\{\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m}\right\}$ can be computed by

$$
\tilde{\lambda}_{k}=\sum_{j \in J} b_{k, j} \lambda_{j}, \quad k=1, \ldots, m .
$$

Proof. It is straightforward to check that the duality condition (2.1) is satisfied.

2.2. Geometry of a Triangulation in \mathbb{R}^{n}

Recall that an ℓ-simplex $\tau(0 \leqslant \ell \leqslant n)$ is the convex hull $\left\langle v_{0}, \ldots, v_{\ell}\right\rangle$ of $\ell+1$ points $v_{0}, \ldots, v_{\ell} \in \mathbb{R}^{n}$ called vertices of τ. The simplex τ is nondegenerate if its ℓ-dimensional volume is non-zero and degenerate otherwise. The dimension of a non-degenerate ℓ-simplex is ℓ. By the interior of an ℓ-simplex we mean its ℓ-dimensional interior. The convex hull of a subset of $\left\{v_{0}, \ldots, v_{\ell}\right\}$ containing $m+1 \leqslant \ell+1$ elements is an m-face of τ. Thus, an m-face is itself an m-simplex. An $(\ell-1)$-face of τ is also called a facet of τ, and any 1 -face of τ is also called an edge of τ. Note that the only ℓ-face of τ is τ itself, and the vertices of τ are its 0 -faces. (We identify a vertex v and its convex hull $\{v\}$.)

Denote by \mathscr{T}_{ℓ} the set of all ℓ-faces of the simplices in $\Delta(\ell=0, \ldots, n-1)$ and set

$$
\mathscr{T}:=\bigcup_{\ell=0}^{n} \mathscr{T}_{\ell},
$$

where $\mathscr{T}_{n}:=\Delta$. We will also use notation $\mathscr{V}:=\mathscr{T}_{0}, \mathscr{E}:=\mathscr{T}_{1}$ and $\mathscr{F}:=\mathscr{T}_{n-1}$ for the sets of all vertices, edges and facets of Δ, respectively. The star of a simplex $\tau \in \mathscr{T}$, denoted by star (τ), is the union of all n-simplices $T \in \Delta$ containing τ, i.e.,

$$
\operatorname{star}(\tau)=\bigcup_{\substack{T \in \Delta \\ \tau \subset T}} T
$$

In particular, $\operatorname{star}(T)=T$ for each $T \in \Delta$.
Furthermore, given $\tau \in \mathscr{T}_{\ell}, \quad \ell \leqslant n-1$, we denote by (τ) the linear manifold in \mathbb{R}^{n} parallel to the affine span $\operatorname{aff}(\tau)$ of τ and by $(\tau)^{\perp}$ the orthogonal complement of (τ) in \mathbb{R}^{n}. Note that $\operatorname{dim}(\tau)^{\perp}=n-\ell$. In particular, $(v)^{\perp}=\mathbb{R}^{n}$ for all $v \in \mathscr{V}$.

Let $\tau=\left\langle v_{0}, \ldots, v_{\ell}\right\rangle \in \mathscr{T}_{\ell}, \ell \leqslant n-1$, and let $w \in \mathscr{V}$ be such that $\tau^{\prime}=$ $\langle\tau, w\rangle:=\left\langle v_{0}, \ldots, v_{\ell}, w\right\rangle$ is in $\mathscr{T}_{\ell+1}$. Since $\operatorname{dim}(\tau)^{\perp}=n-\ell$ and $\operatorname{dim}\left(\tau^{\prime}\right)=$ $\ell+1$, the linear manifold $(\tau)^{\perp} \cap\left(\tau^{\prime}\right)$ has dimension 1 . Moreover, since
$\operatorname{aff}(\tau)$ has codimension 1 as an affine subspace of aff $\left(\tau^{\prime}\right)$, it defines two halfspaces of aff $\left(\tau^{\prime}\right)$, and there is a unique unit vector in $(\tau)^{\perp} \cap\left(\tau^{\prime}\right)$ pointing into the half-space of $\operatorname{aff}\left(\tau^{\prime}\right)$ containing w. We denote this unit vector by

$$
\sigma_{\tau, w}
$$

If v is a vertex in \mathscr{V}, then $\sigma_{v, w}$ is obviously the unit vector in the direction of the edge $\langle v, w\rangle$. If $w_{1}, \ldots, w_{m} \in \mathscr{V}$ and $\tilde{\tau}=\left\langle\tau, w_{1}, \ldots, w_{m}\right\rangle$ is in $\mathscr{T}_{\ell+m}$, $\ell+m \leqslant n$, then we set

$$
\sigma(\tau, \tilde{\tau}):=\left(\sigma_{\tau, w_{1}}, \ldots, \sigma_{\tau, w_{m}}\right)
$$

2.3. Nodal Functionals

Given $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ a linearly independent sequence of unit vectors in \mathbb{R}^{n}, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{Z}_{+}^{m}$, let D_{σ}^{α} denote the partial derivative

$$
D_{\sigma}^{\alpha}:=D_{\sigma_{1}}^{\alpha_{1}} \cdots D_{\sigma_{m}}^{\alpha_{m}},
$$

where $D_{\sigma_{i}}$ is the derivative in the direction σ_{i},

$$
D_{\sigma_{i}} f(x):=\lim _{t \rightarrow+0} t^{-1}\left\{f\left(x+\sigma_{i} t\right)-f(x)\right\},
$$

for a differentiable f. By a nodal functional we mean any linear functional on $\mathscr{S}_{d}^{r}(\Delta)$ of the form $\eta=\delta_{x} D_{\sigma}^{\alpha}$, where x is a point in Ω, and δ_{x} is the point-evaluation functional,

$$
\delta_{x} f:=f(x)
$$

We denote by

$$
\begin{equation*}
q(\eta)=|\alpha|:=\sum_{i=1}^{m} \alpha_{i} \leqslant r \tag{2.5}
\end{equation*}
$$

the order of η. Given $s \in \mathscr{S}_{d}^{r}(\Delta)$, the partial derivative $D_{\sigma}^{\alpha} s$ is continuous everywhere in Ω if $|\alpha| \leqslant r$, and piecewise continuous if $|\alpha|>r$. In this last case we have to choose an n-simplex $T \in \Delta$, with $x \in T$, and apply our functional to $\left.s\right|_{T}$. The following situation is of special interest since, for it, a natural choice for T exists. Assume that for some $\tau \in \mathscr{T}$ we have $x \in \tau$ and $x+\varepsilon \sigma_{i} \in \tau, i=1, \ldots, m$, if $\varepsilon>0$ is small enough. Then $\left.\delta_{x} D_{\sigma}^{\alpha} s\right|_{T}$ is the same for all $T \in \Delta$ such that $\tau \subset T$. We will choose T in this way whenever the above situation occurs.

We will often use the following simple lemma.

Lemma 2.6. Let L be a linear manifold in \mathbb{R}^{n}, $\operatorname{dim} L=m \leqslant n$, and let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ be a basis of L, where $\sigma_{1}, \ldots, \sigma_{m} \in L$ are unit vectors. Suppose that all components of $\tilde{\sigma}=\left(\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{m}\right)$ are also some unit vectors in L. Then for any $\alpha \in \mathbb{Z}^{m}$ there exist real coefficients c_{β} such that

$$
D_{\tilde{\sigma}}^{\alpha}=\sum_{\substack{\beta \in \mathbb{Z}^{m} \\|\beta|=|\alpha|}} c_{\beta} D_{\sigma}^{\beta} .
$$

Proof. Since σ is a basis for L, there are real coefficients $a_{i j}$ such that

$$
\tilde{\sigma}_{i}=\sum_{j=1}^{m} a_{i j} \sigma_{j} \quad i=1, \ldots, m .
$$

Therefore,

$$
D_{\tilde{\sigma}_{i}}=\sum_{j=1}^{m} a_{i j} D_{\sigma_{j}} \quad i=1, \ldots, m,
$$

and

$$
D_{\tilde{\sigma}}^{\alpha}=\left(\sum_{j=1}^{m} a_{1 j} D_{\sigma_{j}}\right)^{\alpha_{1}} \cdots\left(\sum_{j=1}^{m} a_{m j} D_{\sigma_{j}}\right)^{\alpha_{m}},
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

2.4. Polynomial Unisolvent Sets

Let τ be a non-degenerate ℓ-simplex in \mathbb{R}^{n}. We set

$$
\Pi_{m}^{\ell}(\tau):=\left\{\left.p\right|_{\tau}: p \in \Pi_{m}^{n}\right\}, \quad m=-1,0,1,2, \ldots,
$$

where Π_{m}^{n} is the space of all n-variate polynomials of total degree at most $m, m=0,1,2, \ldots$, and $\Pi_{-1}^{n}:=\{0\}$. By a change of variables, the elements of $\Pi_{m}^{\ell}(\tau)$ may be considered as ℓ-variate polynomials of total degree at most m defined on τ. In particular, $\operatorname{dim} \Pi_{m}^{\ell}(\tau)=\operatorname{dim} \Pi_{m}^{\ell}=\binom{\ell+m}{m}, m=0,1$, $2, \ldots, \operatorname{dim} \Pi_{-1}^{\ell}(\tau)=0$. A finite set $\Xi \subset \tau$ is said to be Π_{m}^{ℓ}-unisolvent if for any real $a_{\xi}, \xi \in \Xi$, there exists a unique $p \in \Pi_{m}^{\ell}(\tau)$ such that $p(\xi)=a_{\xi}$ for all $\xi \in \Xi$. Obviously, the number of elements in any Π_{m}^{ℓ}-unisolvent set is equal to the dimension of Π_{m}^{ℓ}.

As a well known example of a Π_{m}^{ℓ}-unisolvent set we mention the set of $\binom{\ell+m}{\ell}$ uniformly distributed points in the ℓ-simplex $\tau=\left\langle v_{0}, \ldots, v_{\ell}\right\rangle$,

$$
\begin{equation*}
\tilde{\Xi}_{m}(\tau):=\left\{\xi: \xi=\frac{u_{0} v_{0}+\cdots+u_{\ell} v_{\ell}}{m}, \text { where } i_{0}+\cdots+i_{\ell}=m\right\} . \tag{2.6}
\end{equation*}
$$

Moreover, its subsets

$$
\begin{equation*}
\widetilde{\Xi}_{m}^{k}(\tau):=\left\{\xi \in \widetilde{\Xi}_{m}(\tau): i_{j}>k, j=0, \ldots, \ell\right\}, \quad 0 \leqslant k \leqslant \frac{m-\ell}{\ell+1}, \tag{2.7}
\end{equation*}
$$

are examples of $\Pi_{m-(k+1)(\ell+1)}^{\ell}$-unisolvent sets in the interior of τ.
The following technical lemma will be very useful later.
Lemma 2.7. Let $p \leqslant \Pi_{m}^{\ell}(\tau)$ and $0 \leqslant k \leqslant \frac{m-\ell}{\ell+1}$. Suppose that
(1) for each facet τ^{\prime} of τ,

$$
\delta_{x} D_{\sigma\left(\tau^{\prime}, \tau\right)}^{k^{\prime}} p=0, \quad \text { all } \quad x \in \tau^{\prime}, \quad k^{\prime}=0, \ldots, k,
$$

(2) for some $\Pi_{m-(k+1)(\ell+1)}^{\ell}$-unisolvent set Ξ in the interior of τ,

$$
\delta_{\xi} p=0, \quad \text { all } \quad \xi \in \Xi .
$$

Then $p=0$.
Proof. Let $\tau_{1}, \ldots, \tau_{\ell+1}$ be all facets of τ. For each τ_{i}, let p_{i} be a linear n-variate polynomial such that $\left.p_{i}\right|_{\tau_{i}}=0$ and $\left.p_{i}\right|_{\tau} \neq 0$. It follows from (1) that

$$
p=\tilde{p} \prod_{i=1}^{\ell+1}\left(\left.p_{i}\right|_{\tau}\right)^{k+1}
$$

where \tilde{p} is a polynomial in $\Pi_{m-(k+1)(\ell+1)}^{\ell}(\tau)$. Since $p_{i}, i=1, \ldots, \ell+1$, do not vanish in the interior of τ, (2) implies that $\tilde{p}(\xi)=0$ for all $\xi \in \Xi$. Therefore, $\tilde{p}=0$, and hence $p=0$.

3. A NODAL DETERMINING SET FOR $\mathscr{S}_{d}^{r}(\Delta)$

Suppose $r \geqslant 1$ and $d \geqslant r 2^{n}+1$. We now associate with each $\tau \in \mathscr{T}$ a set \mathscr{N}_{τ} of nodal functionals on $\mathscr{S}_{d}^{r}(\Delta)$. First, let v be a vertex in $\mathscr{V}=\mathscr{T}_{0}$. For each n-simplex $T \in \Delta$ containing v we define

$$
\begin{aligned}
\mathscr{N}_{v, q}(T) & :=\left\{\delta_{v} D_{\sigma(v, T)}^{\alpha}: \alpha \in \mathbb{Z}_{+}^{n},|\alpha|=q\right\}, \quad 0 \leqslant q \leqslant r 2^{n-1}, \\
\mathscr{N}_{v}(T) & :=\bigcup_{q=0}^{r 2^{n-1}} \mathscr{N}_{v, q}(T) .
\end{aligned}
$$

Moreover, we set

$$
\mathscr{N}_{v, q}:=\bigcup_{\substack{T \in S \\ v \in T}} \mathscr{N}_{v, q}(T), \quad \mathscr{N}_{v}:=\bigcup_{q=0}^{r 2^{n-1}} \mathscr{N}_{v, q}=\bigcup_{\substack{T \in \Delta \\ v \in T}} \mathscr{N}_{v}(T) .
$$

Suppose now $\tau \in \mathscr{T}_{\ell}$ for some $\ell \in\{1, \ldots, n-1\}$. For each $0 \leqslant q \leqslant r 2^{n-\ell-1}$, let $\Xi_{\tau, q}$ be a $\Pi_{\mu, q}^{\ell}$-unisolvent set in the interior of τ, where

$$
\begin{equation*}
\mu_{\ell, q}:=d-q-\left(r 2^{n-\ell}-q+1\right)(\ell+1) . \tag{3.1}
\end{equation*}
$$

Given any n-simplex $T \in \Delta$ containing τ, we define for each $\xi \in \Xi_{\tau, q}$,

$$
\mathscr{N}_{\tau, q, \xi}(T):=\left\{\delta_{\xi} D_{\sigma(\tau, T)}^{\alpha}: \alpha \in \mathbb{Z}_{+}^{n-\ell},|\alpha|=q\right\} .
$$

Moreover, we set

$$
\begin{gathered}
\mathscr{N}_{\tau}(T):=\bigcup_{q=0}^{r 2^{n-\ell-1}} \bigcup_{\xi \in \Xi_{\tau, q}} \mathscr{N}_{\tau, q, \xi}(T), \quad \mathscr{N}_{\tau, q, \xi}:=\bigcup_{\substack{T \in \Delta \\
\tau \subset T}} \mathscr{N}_{\tau, q, \xi}(T), \\
\mathscr{N}_{\tau, q}:=\bigcup_{\xi \in \Xi_{\tau, q}} \mathscr{N}_{\tau, q, \xi}, \quad \mathscr{N}_{\tau}:=\bigcup_{q=0}^{r 2^{n-\ell-1}} \mathscr{N}_{\tau, q}=\bigcup_{\substack{T \in \Delta \\
\tau \subset T}} \mathscr{N}_{\tau}(T) .
\end{gathered}
$$

Finally, for each $T \in \Delta=\mathscr{T}_{n}$ we define

$$
\mathscr{N}_{T}:=\left\{\delta_{\xi}: \xi \in \Xi_{T}\right\},
$$

where Ξ_{T} is a $\Pi_{d-(r+1)(n+1)}^{n}$-unisolvent set in the interior of T.
Note that in general the sets $\mathscr{N}_{\tau, q, \xi}(T)$ are not mutually disjoint for different T containing τ. For example, let $\tau=\left\langle v_{0}, \ldots, v_{n-2}\right\rangle \in \mathscr{T}_{n-2}$, and suppose that both $T=\langle\tau, u, w\rangle$ and $\widetilde{T}=\langle\tau, u, \tilde{w}\rangle$ are in Δ. Then the nodal functional $\delta_{\xi} D_{\sigma_{\tau, u}}^{r+1}$ belongs to $\mathcal{N}_{\tau, r+1, \xi}(T) \cap \mathcal{N}_{\tau, r+1, \xi}(\tilde{T})$. On the other hand, if an n-simplex $T \in \Delta$ is fixed, then the sets $\mathscr{N}_{\tau, q, \xi}(T)$ are mutually disjoint for all τ, q, ξ.

Theorem 3.1. The set

$$
\mathcal{N}:=\bigcup_{\tau \in \mathscr{T}} \mathscr{N}_{\tau}
$$

is a determining set for $\mathscr{S}_{d}^{r}(\Delta)$.

Proof. Let $s \in \mathscr{S}_{d}^{r}(\Delta)$ satisfy $\eta s=0$ for all $\eta \in \mathscr{N}$. We have to show that $s=0$. To this end we choose an arbitrary $T \in \Delta$ and show that $\left.s\right|_{T}=0$. For each vertex v of T, the set

$$
\mathscr{N}_{v}(T)=\left\{\delta_{v} D_{\sigma(v, T)}^{\alpha}: \alpha \in \mathbb{Z}_{+}^{n},|\alpha| \leqslant r 2^{n-1}\right\}
$$

is included in \mathscr{N}. Since $\sigma(v, T)$ is a basis of \mathbb{R}^{n}, we have by Lemma 2.6,

$$
\left.\delta_{v} D_{\sigma}^{\alpha} s\right|_{T}=0, \quad \text { all } \quad \alpha \in \mathbb{Z}_{+}^{n}, \quad|\alpha| \leqslant r 2^{n-1}
$$

for any sequence σ of unit vectors.
For $\ell=0, \ldots, n-1$, we now show by induction that for each ℓ-face τ of T, if the components of σ are some unit vectors in $(\tau)^{\perp}$, then

$$
\begin{equation*}
\left.\delta_{x} D_{\sigma}^{\alpha} s\right|_{T}=0, \quad \text { all } \quad x \in \tau, \alpha \in \mathbb{Z}_{+}^{n-\ell}, \quad|\alpha| \leqslant r 2^{n-\ell-1} . \tag{3.2}
\end{equation*}
$$

The validity of (3.2) for $\ell=0$ is shown above. Suppose $1 \leqslant \ell \leqslant n-1$. Let $\alpha \in \mathbb{Z}_{+}^{n-\ell},|\alpha|=q$, with $1 \leqslant q \leqslant r 2^{n-\ell-1}$. In view of Lemma 2.6, it suffices to prove (3.2) for $\sigma=\sigma(\tau, T)$. We have $p:=\left.D_{\sigma(\tau, T)}^{\alpha} s\right|_{T} \in \Pi_{d-q}^{n}$ and $\left.p\right|_{\tau} \in$ $\Pi_{d-q}^{\ell}(\tau)$. By the induction hypothesis, for each facet τ^{\prime} of τ,

$$
\left.\delta_{x} D_{\sigma\left(\tau^{\prime}, \tau\right)}^{q^{\prime}} p\right|_{\tau}=0, \quad \text { all } \quad x \in \tau^{\prime}, \quad q^{\prime}=0, \ldots, r 2^{n-\ell}-q .
$$

Since the nodal functionals $\delta_{\xi} D_{\sigma(\tau, T)}^{\alpha}, \xi \in \Xi_{\tau, q}$, are included in $\mathscr{N}_{\tau}(T) \subset \mathcal{N}$, we have in addition

$$
\left.\delta_{\xi} p\right|_{\tau}=0, \quad \text { all } \quad \xi \in \Xi_{\tau, q} .
$$

Since $\Xi_{\tau, q}$ is $\Pi_{\mu,, q}^{\ell}$-unisolvent, Lemma 2.7 implies that $\left.p\right|_{\tau}=0$, which confirms (3.2).

In particular, (3.2) holds for each facet F of T, i.e.,

$$
\left.\delta_{s} D_{\sigma(F, T)}^{q} s\right|_{T}=0, \quad \text { all } \quad x \in F, \quad q=0, \ldots, r .
$$

Since \mathscr{N}_{T} is included in \mathscr{N}, we have in addition

$$
\left.\delta_{\xi} s\right|_{T}=0, \quad \text { all } \quad \xi \in \Xi_{T} .
$$

Since Ξ_{T} is $\Pi_{d-(r+1)(n+1)}^{n}$-unisolvent, Lemma 2.7 implies that $\left.s\right|_{T}=0$, which completes the proof.

Theorem 3.2. For each $T \in \Delta$, let

$$
\mathscr{N}(T):=\mathscr{N}_{T} \cup \bigcup_{\ell=0}^{n-1} \bigcup_{\tau \in \mathscr{T}_{\ell}(T)} \mathscr{N}_{\tau}(T)
$$

where $\mathscr{T}_{\ell}(T)$ denotes the set of all ℓ-faces of T. Then $\mathscr{N}(T)$ is a minimal determining set for Π_{d}^{n}.

Proof. It is easy to see that the set of nodal functionals $\mathscr{N}(T)$ is the same, whatever the triangulation Δ containing T may be. If we take $\Delta=\{T\}$, then obviously $\mathscr{S}_{d}^{r}(\Delta)=\Pi_{d}^{n}$ and $\mathscr{N}=\mathscr{N}(T)$. Therefore, $\mathscr{N}(T)$ is a determining set for Π_{d}^{n} by Theorem 3.1. It thus remains to show that $\# \mathscr{N}(T)=\operatorname{dim} \Pi_{d}^{n}=\binom{n+d}{n}$. We have

$$
\# \mathscr{N}(T)=\# \mathscr{N}_{T}+\sum_{v \in \mathscr{F}_{0}(T)} \# \mathscr{N}_{v}(T)+\sum_{t=1}^{n-1} \sum_{\tau \in \mathscr{T}_{\ell}(T)} \# \mathscr{N}_{\tau}(T) .
$$

It is easy to see that

$$
\begin{gathered}
\# \mathscr{N}_{T}=\binom{n+d-(r+1)(n+1)}{n} \\
\# \mathscr{N}_{v}(T)=\sum_{q=0}^{r 2^{n-1}}\binom{n-1+q}{n-1}=\binom{n+r 2^{n-1}}{n}, \quad v \in \mathscr{T}_{0}(T) \\
\# \mathscr{N}_{\tau}(T)= \\
\sum_{q=0}^{r 2^{n-\ell-1}}\binom{\ell+\mu_{\ell, q}}{\ell}\binom{n-\ell-1+q}{n-\ell-1} \\
\quad \tau \in \mathscr{T}_{\ell}(T), \quad 1 \leqslant \ell \leqslant n-1
\end{gathered}
$$

where $\mu_{\ell, q}$ is defined in (3.1).
We now consider the set

$$
Z:=\left\{\alpha \in \mathbb{Z}_{+}^{n+1}:|\alpha|=d\right\} .
$$

Obviously, \# $Z=\binom{n+d}{n}$. Therefore, the theorem will be established if we show that

$$
\begin{equation*}
\# Z=\# \mathscr{N}(T) \tag{3.3}
\end{equation*}
$$

For any nonempty subset I of $\{1, \ldots, n+1\}$, let

$$
\begin{gathered}
Z_{I}:=\left\{\alpha \in Z: \sum_{i \in I} \alpha_{i} \geqslant d-r 2^{n-\ell-1}\right\}, \quad \text { if } \ell:=\# I-1<n, \\
Z_{\{1, \ldots, n+1\}}:=Z,
\end{gathered}
$$

and

$$
\begin{aligned}
\tilde{Z}_{\{i\}}:=Z_{\{i\}}, & i=1, \ldots, n+1, \\
\widetilde{Z}_{I}:=\left.Z_{I}\right|_{i \in I} Z_{I \backslash\{i\}}, & \# I \geqslant 2 .
\end{aligned}
$$

Taking into account the assumption $d \geqslant r 2^{n}+1$, it is not difficult to see that Z is a disjoint union of the sets \tilde{Z}_{I}. Hence,

$$
\# Z=\sum_{\ell=0}^{n} \sum_{\# I=\ell+1} \# \tilde{Z}_{I}
$$

We have

$$
\begin{aligned}
\tilde{Z}_{\{1, \ldots, n+1\}} & =\left\{\alpha \in Z: \sum_{\substack{i=1 \\
i \neq j}}^{n+1} \alpha_{i}<d-r, j=1, \ldots, n+1\right\} \\
& =\left\{\alpha \in \mathbb{Z}_{+}^{n+1}:|\alpha|=d, \alpha_{j} \geqslant r+1, j=1, \ldots, n+1\right\}
\end{aligned}
$$

and it follows that

$$
\# \tilde{Z}_{\{1, \ldots, n+1\}}=\binom{n+d-(r+1)(n+1)}{n}=\# \mathscr{N}_{T}
$$

Furthermore, for each $i=1, \ldots, n+1$, we have

$$
\tilde{Z}_{\{i\}}=\left\{\alpha \in \mathbb{Z}_{+}^{n+1}:|\alpha|=d, \alpha_{i} \geqslant d-r 2^{n-1}\right\}
$$

so that $\# \tilde{Z}_{\{i\}}=\binom{n+r 2^{n-1}}{n}$, and hence

$$
\sum_{i=1}^{n+1} \# \tilde{Z}_{\{i\}}=(n+1)\binom{n+r 2^{n-1}}{n}=\sum_{v \in \mathscr{T}_{0}(T)} \# \mathscr{N}_{v}(T)
$$

Let now $I \subset\{1, \ldots, n+1\}, \ell:=\# I-1<n$. Then

$$
\begin{aligned}
\tilde{Z}_{I} & =\left\{\alpha \in Z: \sum_{i \in I} \alpha_{i} \geqslant d-r 2^{n-\ell-1}, \sum_{i \in I \backslash\{j\}} \alpha_{i}<d-r 2^{n-\ell}, j \in I\right\} \\
& =\bigcup_{q=0}^{r 2^{n-\ell-1}}\left\{\alpha \in Z: \sum_{i \in I} \alpha_{i}=d-q, \alpha_{j} \geqslant r 2^{n-\ell}-q+1, j \in I\right\}
\end{aligned}
$$

A standard combinatorial argument shows that the cardinality of the set

$$
\left\{\alpha \in Z: \sum_{i \in I} \alpha_{i}=d-q, \alpha_{j} \geqslant r 2^{n-\ell}-q+1, j \in I\right\}
$$

is $\left.\binom{\left.\ell+\mu_{\ell, q}\right)}{\ell} \stackrel{n-\ell-1+q}{n-\ell-1}\right)$. Since the number of subsets I of $\{1, \ldots, n+1\}$ consisting of $\ell+1$ elements is equal to $\binom{n+1}{\ell+1}=\# \mathscr{T}_{\ell}(T)$, we conclude that

$$
\sum_{\# I=\ell+1} \# \tilde{Z}_{I}=\sum_{\tau \in \mathscr{T}_{(}(T)} \# \mathscr{N}_{\tau}(T), \quad \ell=1, \ldots, n-1 .
$$

Thus, (3.3) holds, and the proof is complete.
Theorem 3.2 shows that the set $\mathcal{N}(T)$ defines a Hermite interpolation operator $\mathscr{H}_{T}: C^{r 2^{n-1}}(T) \rightarrow \Pi_{d}^{n}$ as follows. Given $f \in C^{r 2^{n-1}}(T)$, let $\mathscr{H}_{T} f$ be the unique polynomial in Π_{d}^{n} satisfying

$$
\begin{equation*}
\eta \mathscr{H}_{T} f=\eta f, \quad \text { all } \quad \eta \in \mathscr{N}(T) . \tag{3.4}
\end{equation*}
$$

Obviously, this is a standard finite-element interpolation scheme, see e.g. [24, 30].

The following estimation of the norm of $\mathscr{H}_{T} f$ in the case of uniformly distributed points easily follows from the general results given in [13]; see also the proof of Lemma 3.9 in [16].

Lemma 3.3. Choose

$$
\begin{align*}
\Xi_{\tau, q} & =\widetilde{\Xi}_{d-q}^{r 2^{n-\ell}-q}, & & \text { all } \tau \in \mathscr{T}_{\ell}, 1 \leqslant \ell \leqslant n-1,0 \leqslant q \leqslant r 2^{n-\ell-1}, \tag{3.5}\\
\Xi_{T} & =\widetilde{\Xi}_{d}^{r}, & & \text { all } T \in \mathscr{T}_{n},
\end{align*}
$$

where $\widetilde{\Xi}_{m}^{k}$ are defined in (2.7). Then

$$
\begin{equation*}
\left\|\mathscr{H}_{T} f\right\|_{L_{\infty}(T)} \leqslant K \max _{\eta \in \mathcal{N}(T)} h_{T}^{q(\eta)}|\eta f|, \tag{3.6}
\end{equation*}
$$

where h_{T} is the diameter of $T, q(\eta)$ is the order of the nodal functional η, and K is a constant depending only on n, r and d.

4. SMOOTHNESS CONDITIONS

As shown in the previous section, $\mathcal{N} \subset \mathscr{S}_{d}^{r}(\Delta)^{*}$ is a determining set for $\mathscr{S}_{d}^{r}(\Delta)$. Therefore, \mathscr{N} is a spanning set for $\mathscr{S}_{d}^{r}(\Delta)^{*}$. However, as we will see, there are some linear dependencies between the elements of \mathscr{N}, called nodal smoothness conditions. Our next task is to describe these conditions.

Let $\tau \in \mathscr{T}_{\ell}$ for some $0 \leqslant \ell \leqslant n-1$, and let $F=\left\langle\tau, u_{1}, \ldots, u_{n-\ell-1}\right\rangle \in \mathscr{T}_{n-1}$ be an interior facet of Δ attached to τ. Then there are exactly two n-simplices $T_{1}, \quad T_{2} \in \Delta$ sharing the facet F. Let $T_{1}=\left\langle F, u_{n-\ell}\right\rangle$, $T_{2}=\langle F, w\rangle$. Since the components of

$$
\sigma\left(\tau, T_{1}\right)=\left(\sigma_{\tau, u_{1}}, \ldots, \sigma_{\tau, u_{n-\ell}}\right)
$$

form a basis for $(\tau)^{\perp}$, and since $\sigma_{\tau, w}$ also lies in $(\tau)^{\perp}$, there exists $\mu \in \mathbb{R}^{n-\ell}$, $\mu=\left(\mu_{1}, \ldots, \mu_{n-\ell}\right)$, such that

$$
\sigma_{\tau, w}=\sum_{i=1}^{n-\ell} \mu_{i} \sigma_{\tau, u_{i}} .
$$

Lemma 4.1. If $s \in \mathscr{S}_{d}^{r}(\Delta)$, then for all $\xi \in \tau, \alpha \in \mathbb{Z}_{+}^{n-\ell-1}$ and $0 \leqslant r^{\prime} \leqslant r$,

$$
\begin{equation*}
\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, \omega}}^{r^{\prime}} s=\sum_{\substack{\beta \in \mathbb{Z}^{n+\iota} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\beta} s, \tag{4.1}
\end{equation*}
$$

where $\binom{|\beta|}{\beta}:=|\beta|!/ \beta_{1}!\cdots \beta_{n-\ell}!, \mu^{\beta}:=\mu_{1}^{\beta_{1}} \cdots \mu_{n-\ell}^{\beta_{n-\ell}}$.
Proof. Let $p_{1}:=\left.s\right|_{T_{1}}, p_{2}:=\left.s\right|_{T_{2}}$ and $\sigma_{i}:=\sigma_{\tau, u_{i}}, i=1, \ldots, n-\ell$. We have

$$
\begin{aligned}
\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}} p_{1} & =\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha}\left(\sum_{i=1}^{n-\ell} \mu_{i} D_{\sigma_{i}}\right)^{r^{\prime}} p_{1} \\
& =\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha}\left(\sum_{\substack{\beta \in \mathbb{Z}_{+-\iota}^{n-\iota} \\
|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} D_{\sigma_{1}}^{\beta_{1}} \cdots D_{\sigma_{n-\ell}}^{\beta_{n-\iota}-\iota}\right) p_{1} \\
& =\sum_{\substack{\beta \in \mathbb{Z}_{+-\iota}^{n-\iota} \\
|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\beta} p_{1} .
\end{aligned}
$$

Since $s \in C^{r}\left(T_{1} \cup T_{2}\right)$ and $r^{\prime} \leqslant r$,

$$
D_{\sigma_{\tau, w}}^{r^{\prime}} p_{1}(x)=D_{\sigma_{\tau, w}}^{r^{\prime}} p_{2}(x), \quad \text { all } \quad x \in F=T_{1} \cap T_{2}
$$

Therefore,

$$
\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}} p_{1}=\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}} p_{2}
$$

for all $\xi \in F$, in particular for $\xi \in \tau$. Thus,

$$
\begin{equation*}
\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}} p_{2}=\sum_{\substack{\beta \in \mathbb{Z}_{n}^{n+t} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\beta} p_{1} . \tag{4.2}
\end{equation*}
$$

Finally, we note that

$$
\begin{equation*}
D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}}=D_{\sigma\left(\tau, T_{2}\right)}^{\gamma}, \quad D_{\sigma(\tau, F)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\beta}=D_{\sigma\left(\tau, T_{1}\right)}^{\tilde{\gamma}}, \tag{4.3}
\end{equation*}
$$

where $\gamma=\left(\alpha_{1}, \ldots, \alpha_{n-\ell-1}, r^{\prime}\right), \tilde{\gamma}=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n-\ell-1}+\beta_{n-\ell-1}, \beta_{n-\ell}\right)$, and the observation that by definition

$$
\delta_{\xi} D_{\sigma\left(\tau, T_{2}\right)}^{v} s=\delta_{\xi} D_{\sigma\left(\tau, T_{2}\right)}^{v} p_{2}, \quad \delta_{\xi} D_{\sigma\left(\tau, T_{1}\right)}^{\tilde{\gamma}} s=\delta_{\xi} D_{\sigma\left(\tau, T_{1}\right)}^{\tilde{\gamma}} p_{1}
$$

(see Section 2.3) completes the proof.
Remark 4.2. Lemma 4.1 shows that the condition (4.2) holds for all $\xi \in \tau, \alpha \in \mathbb{Z}_{+}^{n-\ell}$ and $0 \leqslant r^{\prime} \leqslant r$ if the two polynomials p_{1} and p_{2} defined on T_{1} and T_{2}, respectively, join together with C^{r}-smoothness across $F=T_{1} \cap T_{2}$. It is not difficult to see that the converse is also true. Note that for $\tau \in \mathscr{T}_{0}$, Lemma 4.1 as well as its converse were given (in a slightly different form) in Theorem 4.1.2 of [11], and (in the bivariate case) in [16].

We now concentrate on the conditions (4.1) that involve the nodal functionals in the set \mathcal{N} defined in Section 3. Namely, Lemma 4.1 implies that the following linear relations between the elements of \mathcal{N} hold:
(1) given $v \in \mathscr{T}_{0}$ and $0 \leqslant q \leqslant r 2^{n-1}$, the system $\mathscr{R}_{v, q}$ of linear conditions

$$
\begin{equation*}
\delta_{v} D_{\sigma(v, F)}^{\alpha} D_{\sigma_{v, w}}^{r^{\prime}}=\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \delta_{v} D_{\sigma(v, F)}^{\alpha} D_{\sigma\left(v, T_{1}\right)}^{\beta}, \tag{4.4}
\end{equation*}
$$

for all $0 \leqslant r^{\prime} \leqslant \min \{r, q\}$, all $\alpha \in \mathbb{Z}_{+}^{n-1}$, with $|\alpha|=q-r^{\prime}$, and all interior facets $F \in \mathscr{T}_{n-1}$ such that $v \in F$,
(2) given $\tau \in \mathscr{T}_{\ell}$ (where $1 \leqslant \ell \leqslant n-2$), $0 \leqslant q \leqslant r 2^{n-\ell-1}$, and $\xi \in \Xi_{\tau, q}$, the system $\mathscr{R}_{\tau, q, \xi}$ of linear conditions

$$
\begin{equation*}
\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}}=\sum_{\substack{\beta \in \mathbb{Z}_{n}^{n}-\iota \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\beta}, \tag{4.5}
\end{equation*}
$$

for all $0 \leqslant r^{\prime} \leqslant \min \{r, q\}$, all $\alpha \in \mathbb{Z}_{+}^{n-\ell-1}$, with $|\alpha|=q-r^{\prime}$, and all interior facets $F \in \mathscr{T}_{n-1}$ such that $\tau \subset F$, and
(3) given an interior facet $F \in \mathscr{T}_{n-1}, 0 \leqslant q \leqslant r$, and $\xi \in \Xi_{F, q}$, the linear condition $\mathscr{R}_{F, q, \xi}$,

$$
\begin{equation*}
\delta_{\xi} D_{\sigma_{F, w}}^{q}=(-1)^{q} \delta_{\xi} D_{\sigma\left(F, T_{1}\right)}^{q} . \tag{4.6}
\end{equation*}
$$

(Here and above w, T_{1} and μ_{i} correspond to a particular F and are defined as in Lemma 4.1.)

Remark 4.3. In view of (4.3) it is easy to see that the smoothness conditions in $\mathscr{R}_{v, q}, \mathscr{R}_{\tau, q, \xi}$ or $\mathscr{R}_{F, q, \xi}$ involve only the nodal functionals in $\mathscr{N}_{v, q}$, $\mathscr{N}_{\tau, q, \xi}$ or $\mathscr{N}_{F, q, \xi}$, respectively. (See the definition of the sets of nodal functionals $\mathscr{N}_{v, q}$ and $\mathscr{N}_{\tau, q, \xi}$ in Section 3.)

Let

$$
\begin{array}{ll}
\mathscr{R}_{v}:=\bigcup_{q=0}^{r 2^{n-1}} \mathscr{R}_{v, q}, \quad v \in \mathscr{T}_{0}, \\
\mathscr{R}_{\tau}:=\bigcup_{q=0}^{r 2^{n-\ell-1}} \mathscr{R}_{\tau, q} \quad \mathscr{R}_{\tau, q}:=\bigcup_{\xi \in \Xi_{\tau, q}} \mathscr{R}_{\tau, q, \xi}, \quad \tau \in \mathscr{T}_{\ell}, \quad 1 \leqslant \ell \leqslant n-1 . \tag{4.7}
\end{array}
$$

Theorem 4.4. The set

$$
\begin{equation*}
\mathscr{R}:=\bigcup_{\tau \in \mathscr{T} \backslash \mathscr{F}_{n}} \mathscr{R}_{\tau} \tag{4.8}
\end{equation*}
$$

is a complete system of linear relations for \mathscr{N} over $\mathscr{S}_{d}^{r}(\Delta)$.
Proof. By Theorem 3.1, \mathscr{N} is a determining set for $\mathscr{S}_{d}^{r}(\Delta)$. Suppose the system \mathscr{R} is written as

$$
\sum_{j \in J} c_{i, j} \eta_{j}=0, \quad i \in I,
$$

where I, J are some index sets, $\left\{\eta_{j}\right\}_{j \in J}=\mathcal{N}$, and $c_{i, j}$ real coefficients. Let $a_{j}, j \in J$, be any real numbers satisfying

$$
\sum_{j \in J} c_{i, j} a_{j}=0, \quad i \in I .
$$

According to Definition 2.2, we have to show that there exists a spline $s \in \mathscr{S}_{d}^{r}(\Delta)$ such that $\eta_{j} s=a_{j}$ for all $j \in J$. We first construct the polynomial pieces of $s, p_{T}=\left.s\right|_{T}, T \in \Delta$, as follows. By Theorem 3.2, $\mathscr{N}(T)$ is a minimal determining set for Π_{d}^{n}. We define p_{T} to be the unique polynomial in Π_{d}^{n} such that

$$
\eta_{j} p_{T}=a_{j}, \quad \text { all } \quad \eta_{j} \in \mathscr{N}(T) .
$$

We thus have to prove that $p_{T}, T \in \Delta$, join together with C^{r}-smoothness. To this end it suffices to consider two n-simplices $T_{1}, T_{2} \in \Delta$ sharing a facet
$F \in \mathscr{T}_{n-1}$ and show that the two polynomials $p_{1}:=p_{T_{1}}$ and $p_{2}:=p_{T_{2}}$ join with C^{r}-smoothness across F. This, in turn, will follow if we show that

$$
\begin{equation*}
\delta_{x} D_{\sigma_{F, w}^{\prime}}^{r^{\prime}}\left(p_{2}-p_{1}\right)=0, \quad \text { all } \quad x \in F, \quad r^{\prime}=0, \ldots, r \tag{4.9}
\end{equation*}
$$

where w is the vertex of T_{2} not lying in F. (That is, $T_{2}=\langle F, w\rangle$.)
We first prove by induction on ℓ that for each ℓ-face τ of F, $\ell=0, \ldots, n-2$, and for all $r^{\prime}=0, \ldots, r$, and $\alpha \in \mathbb{Z}^{n-\ell-1}$, with $|\alpha| \leqslant r 2^{n-\ell-1}-r^{\prime}$,

$$
\begin{equation*}
\delta_{x} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}}\left(p_{2}-p_{1}\right)=0, \quad \text { all } \quad x \in \tau \tag{4.10}
\end{equation*}
$$

Let $\ell=0$, and let v be a vertex of F. Given $r^{\prime}=0, \ldots, r$ and $\alpha \in \mathbb{Z}^{n-1}$, with $|\alpha| \leqslant r 2^{n-1}-r^{\prime}$, the functional $\eta_{j_{0}}:=\delta_{v} D_{\sigma(v, F)}^{\alpha} D_{\sigma_{v, w}}^{r^{\prime}}$ is in $\mathscr{N}\left(T_{2}\right)$. Hence, $\eta_{j_{0}} p_{2}=a_{j_{0}}$. Let us compute $\eta_{j_{0}} p_{1}$. We set $\eta_{j_{\beta}}:=\delta_{v} D_{\sigma(v, F)}^{\alpha} D_{\sigma\left(v, T_{1}\right)}^{\beta} \in \mathscr{N}\left(T_{1}\right)$, $|\beta|=r^{\prime}$. By (4.4), the equation

$$
\eta_{j_{0}}-\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}}=0
$$

belongs to \mathscr{R}. Therefore,

$$
a_{j_{0}}-\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}}=0 .
$$

On the other hand, since $\eta_{j_{\beta}} \in \mathscr{N}\left(T_{1}\right)$, we have $\eta_{j_{\beta}} p_{1}=a_{j_{\beta}}$, and it follows that

$$
\eta_{j_{0}} p_{1}=\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} p_{1}=\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}}=a_{j_{0}} .
$$

Thus, $\eta_{j_{0}}\left(p_{2}-p_{1}\right)=0$, which confirms (4.10) for $\ell=0$.
Suppose $1 \leqslant \ell \leqslant n-2$, and let τ be and ℓ-face of F. Given $r^{\prime}=0, \ldots, r$ and $\alpha \in \mathbb{Z}^{n-\ell-1}$, with $|\alpha| \leqslant r 2^{n-\ell-1}-r^{\prime}$, consider

$$
p:=\left.D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}}\left(p_{2}-p_{1}\right)\right|_{\tau} \in \Pi_{d-q}^{\ell}(\tau),
$$

where $q:=|\alpha|+r^{\prime}$. Let us show that for each facet τ^{\prime} of τ,

$$
\begin{equation*}
\delta_{x} D_{\sigma\left(\tau^{\prime}, \tau\right)}^{q^{\prime}} p=0, \quad \text { all } \quad x \in \tau^{\prime}, \quad q^{\prime}=0, \ldots, r 2^{n-\ell}-q . \tag{4.11}
\end{equation*}
$$

Since the components of $\sigma\left(\tau^{\prime}, \tau\right)$ and $\sigma(\tau, F)$ form a basis for $\left(\tau^{\prime}\right)^{\perp} \cap(F)$, we have by Lemma 2.6, that

$$
D_{\sigma\left(\tau^{\prime}, \tau\right)}^{q^{\prime}} D_{\sigma(\tau, F)}^{\alpha}=\sum_{\substack{\gamma \in \mathbb{Z}^{n-\epsilon} \\|\gamma|=|\alpha|+q^{\prime}}} c_{\gamma} D_{\sigma\left(\tau^{\prime}, F\right)}^{\gamma} .
$$

Moreover, since $\sigma_{\tau, w} \in(\tau)^{\perp} \subset\left(\tau^{\prime}\right)^{\perp}$,

$$
D_{\sigma, w}^{\sigma_{\tau, w}^{\prime}}=\sum_{\tilde{r}=0}^{r^{\prime}} \sum_{\substack{\gamma \in \mathbb{Z}^{n-\epsilon} \\|y|=r^{\prime}-\tilde{r}}} \tilde{c}_{\gamma, \tilde{r}} D_{\sigma\left(\tau^{\prime}, F\right)}^{v} D_{\sigma_{\zeta^{\prime}, w}}^{\tilde{r}} .
$$

Therefore, we have for $x \in \tau^{\prime}$,

$$
\begin{aligned}
\delta_{x} D_{\sigma\left(\tau^{\prime}, \tau\right)}^{q^{\prime}} p & =\delta_{x} D_{\sigma\left(\tau^{\prime}, \tau\right)}^{q^{\prime}} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}}\left(p_{2}-p_{1}\right) \\
& =\sum_{\tilde{r}=0}^{r^{\prime}} \sum_{\substack{\gamma \in \mathbb{Z}^{n-\epsilon} \\
|\gamma|=|\alpha|+q^{\prime}}} \sum_{\substack{\tilde{\tilde{\gamma}} \in \mathbb{Z}^{n-\epsilon}=r^{\prime}-\tilde{r}}} c_{\gamma} \tilde{c}_{\tilde{\gamma}, \tilde{r}} \delta_{x} D_{\sigma\left(\tau^{\prime}, F\right)}^{\gamma+\tilde{\gamma}} D_{\sigma_{\tau}, w}^{\tilde{r}}\left(p_{2}-p_{1}\right) .
\end{aligned}
$$

By the induction hypothesis, every term in this last sum is zero (since $\tilde{r} \leqslant r$ and $|\gamma|+|\tilde{\gamma}|+\tilde{r}=|\alpha|+q^{\prime}+r^{\prime}=q+q^{\prime} \leqslant r 2^{n-\ell}$), and (4.11) follows. We show now that

$$
\begin{equation*}
\delta_{\xi} p=0, \quad \text { all } \quad \xi \in \Xi_{\tau, q}, \tag{4.12}
\end{equation*}
$$

where $\Xi_{\tau, q}$ is a $\Pi_{\mu_{\ell, q}}^{\ell}$-unisolvent set in the interior of τ as defined in Section 3. Let $\xi \in \Xi_{\tau, q}$ be given. Similar to the proof in case $\ell=0$, we set $\eta_{j_{0}}:=\delta_{\xi} D_{\sigma(\tau, F)}^{\alpha} D_{\sigma_{\tau, w}}^{r^{\prime}} \in \mathscr{N}\left(T_{2}\right), \quad \eta_{j_{\beta}}:=\delta_{\xi} D_{\sigma(\tau, f)}^{\alpha} D_{\sigma\left(\tau, T_{1}\right)}^{\alpha} \in \mathscr{N}\left(T_{1}\right), \quad|\beta|=r^{\prime}$. By (4.5), the equation

$$
\eta_{j_{0}}-\sum_{\substack{\beta \in \mathbb{Z}^{n+\iota} \\|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}}=0
$$

belongs to \mathscr{R}. Hence, we get

$$
\begin{aligned}
\eta_{j_{0}} p_{1} & =\sum_{\substack{\beta \in \mathbb{Z}_{+}^{n-\iota} \\
|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} p_{1}=\sum_{\substack{\beta \in \mathbb{Z}_{+--}^{n^{-}} \\
|\beta|=r^{\prime}}}\binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}} \\
& =a_{j_{0}}=\eta_{j_{0}} p_{2}
\end{aligned}
$$

and (4.12) is proved. In view of (4.11) and (4.12), we conclude by Lemma 2.7 that $p=0$, which establishes (4.10).

To prove (4.9) for any given $r^{\prime}=0, \ldots, r$, we set

$$
p:=\left.D_{\sigma_{F, w}}^{r^{\prime}}\left(p_{2}-p_{1}\right)\right|_{F} \in \Pi_{d-r^{\prime}}^{n-1}
$$

Analysis similar to the above shows that by (4.10) it follows that for each facet τ of F,

$$
\delta_{x} D_{\sigma(\tau, F)}^{q} p=0, \quad \text { all } \quad x \in \tau, q=0, \ldots, 2 r-r^{\prime} .
$$

Furthermore, given $\xi \in \Xi_{F, x^{\prime}}$, the nodal functionals $\eta_{j_{1}}:=\delta_{\xi} D_{\sigma\left(F, T_{1}\right)}^{r^{\prime}}$ and $\eta_{j_{2}}:=\delta_{\xi} D_{\sigma_{F, w}}^{r^{\prime}}$ are in $\mathscr{N}\left(T_{1}\right)$ and $\mathscr{N}\left(T_{2}\right)$, respectively. By (4.6),

$$
\delta_{\xi} D_{\sigma_{F, w}}^{r^{\prime}}=(-1)^{r^{\prime}} \delta_{\xi} D_{\sigma\left(F, T_{1}\right)}^{r^{\prime}},
$$

and hence

$$
\delta_{\xi} p=\eta_{j_{2}} p_{2}-(-1)^{r^{\prime}} \eta_{j_{1}} p_{1}=a_{j_{2}}-(-1)^{r^{\prime}} a_{j_{1}}=0 .
$$

Thus, Lemma 2.7 implies that $p=0$, which establishes (4.9) and completes the proof of the theorem.

5. CONSTRUCTION OF A LOCAL BASIS FOR $\mathscr{S}_{d}^{r}(\Delta)$

Let $d \geqslant r 2^{n}+1$. Since \mathscr{N} is a determining set for $\mathscr{S}_{d}^{r}(\Delta)$ by Theorem 3.1, and \mathscr{R} is a complete system of linear relations for \mathscr{N} over $\mathscr{S}_{d}^{r}(\Delta)$ by Theorem 4.4, Algorithm 2.4 can be applied to construct a basis $\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{m}\right\}$ for $\mathscr{S}_{d}^{r}(\Delta)$. To this end we only need to choose a basis $\left\{a^{[1]}, \ldots, a^{[m]}\right\}$ for the null space $N(C)$ of the corresponding matrix C. In this section we will show how to choose the basis for $N(C)$ so that the resulting basis for $\mathscr{S}_{d}^{r}(\Delta)$ is local as defined below.

Let v be a vertex of Δ. We set $\operatorname{star}^{1}(v):=\operatorname{star}(v)$, and define $\operatorname{star}^{\gamma}(v)$, $\gamma \geqslant 2$, recursively as the union of the stars of the vertices in $\mathscr{T}_{0} \cap \operatorname{star}^{\gamma-1}(v)$.

Definition 5.1. Let \mathscr{S} be a linear subspace of $\mathscr{S}_{d}^{r}(\Delta)$. A basis $\left\{s_{1}, \ldots, s_{m}\right\}$ for \mathscr{S} is called local (or γ-local) if there is an integer γ such that for each $k=1, \ldots, m$, supp $s_{k} \subset \operatorname{star}^{\gamma}\left(v_{k}\right)$, for some vertex v_{k} of Δ, and the dual functionals $\lambda_{1}, \ldots, \lambda_{m}$, defined by (2.1), can be localized in the same sets $\operatorname{star}^{\gamma}\left(v_{1}\right), \ldots, \operatorname{star}^{\gamma}\left(v_{k}\right)$, i.e., for each $k=1, \ldots, m, \lambda_{k} s=0$ for all $s \in \mathscr{S}$ satisfying $\left.s\right|_{\operatorname{star}^{\gamma}\left(v_{k}\right)}=0$.

We say that an algorithm produces local bases if there exists an absolute (integer) constant γ such that any basis constructed by that algorithm is at most γ-local.

The key observation for our construction is that the matrix C of the system \mathscr{R} has a block diagonal structure. More precisely, by Remark 4.3 we have

$$
\begin{align*}
& C=[\widetilde{C} O], \tag{5.1}\\
& \widetilde{C}=\operatorname{diag}\left(C_{\tau}\right)_{\tau \in \mathscr{T} \backslash \mathscr{F}_{n}}
\end{align*}
$$

where C_{τ} is the matrix of the system \mathscr{R}_{τ} defined in (4.7), and O is the zero matrix corresponding to the nodal functionals in $\mathscr{N}_{T}, T \in \mathscr{T}_{n}$, not involved in any smoothness conditions. Moreover, each matrix C_{τ} itself is block diagonal. Namely,

$$
\begin{equation*}
C_{\tau}=\operatorname{diag}\left(C_{\tau, q}\right)_{q=0, \ldots, r 2^{n-\ell-1}}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n-1, \tag{5.2}
\end{equation*}
$$

where $C_{\tau, q}$ is the matrix of the system $\mathscr{R}_{\tau, q}$ defined in (4.4)-(4.7). If $1 \leqslant \ell \leqslant n-1$, then the matrix $C_{\tau, q}$ is again block diagonal,

$$
C_{\tau, q}=\operatorname{diag}\left(C_{\tau, q, \xi}\right)_{\xi \in \Xi_{\tau, q}},
$$

with $C_{\tau, q, \xi}$ being the matrix of the system $\mathscr{R}_{\tau, q, \xi}$. By Lemma 2.3 , we have

$$
\begin{align*}
\operatorname{dim} \mathscr{S}_{d}^{r}(\Delta)= & \# \mathscr{N}-\sum_{\tau \in \mathscr{T} \backslash \mathscr{T}_{n}} \operatorname{rank} C_{\tau} \\
= & \# \mathscr{N}-\sum_{v \in \mathscr{T}_{0}} \sum_{q=0}^{r 2^{n-1}} \operatorname{rank} C_{v, q} \\
& -\sum_{\ell=1}^{n-1} \sum_{\tau \in \mathscr{T}_{\ell}} \sum_{q=0}^{r 2^{n-\ell-1}} \sum_{\xi \in \tilde{E}_{\tau, q}} \operatorname{rank} C_{\tau, q, \xi} . \tag{5.3}
\end{align*}
$$

Remark 5.2. The formula (5.3) leads to the efficient computation of the dimension of the space $\mathscr{S}_{d}^{r}(\Delta)$ by applying to the small matrices $C_{v, q}$ and $C_{\tau, q, \xi}$ the standard numerical algorithms of rank determination (see e.g. [29]).

In view of (5.1) and (5.2), $N(\tilde{C})$ is an (outer) direct sum of $N\left(C_{\tau, q}\right)$, $q=0, \ldots, r 2^{n-\ell-1}, \tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n-1$. Hence, if we know bases for all $N\left(C_{\tau, q}\right)$, then we can combine them into a basis for $N(\widetilde{C})$ that trivially extends to a basis for $N(C)$. Let $\mathcal{N}_{\tau, q}=\left\{\eta_{j}^{[\tau, q]}\right\}_{j \in J_{\tau, q}}$ and $C_{\tau, q}=$ $\left(c_{i, j}^{[\tau, q]}\right)_{i \in I_{t, q}, j \in J_{\tau, q}}$, so that $\mathscr{R}_{\tau, q}$ has the form

$$
\sum_{j \in J_{\tau, q}} c_{i, j}^{[\tau, q]} \eta_{j}^{[\tau, q]}=0, \quad i \in I_{\tau, q} .
$$

For each $\tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n-1$, and $q=0, \ldots, r 2^{n-\ell-1}$, suppose

$$
\begin{equation*}
a^{[\tau, q, k]}=\left(a_{j}^{[\tau, q, k]}\right)_{j \in J_{\tau, q}}, \quad k=1, \ldots, m_{\tau, q}, \tag{5.4}
\end{equation*}
$$

form a basis for $N\left(C_{\tau, q}\right)$. In addition, for each $T \in \mathscr{T}_{n}$, let $a^{[T, 0, k]}=$ $\left(a_{j}^{[T, 0, k]}\right)_{j \in J_{T, 0}}, k=1, \ldots, m_{T}$, be any basis of $\mathbb{R}^{m_{T}}$, where $m_{T}=\# J_{T, 0}=$ $\# \mathscr{N}_{T}=\# \Xi_{T}$. We define $\tilde{a}^{[\tau, q, k]}=\left(\tilde{a}_{j}^{[\tau, q, k]}\right)_{j \in J}$, with $J=\bigcup_{\tau, q} J_{\tau, q}$, by

$$
\tilde{a}_{j}^{[\tau, q, k]}:= \begin{cases}a_{j}^{[\tau, q, k]}, & \text { if } j \in J_{\tau, q}, \\ 0, & \text { otherwise. }\end{cases}
$$

Then the vectors $\tilde{a}^{[\tau, q, k]}, k=1, \ldots, m_{\tau, q}, q=0, \ldots, q_{\ell}, \tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n$, where

$$
q_{\ell}= \begin{cases}r 2^{n-\ell-1}, & \text { if } 0 \leqslant \ell \leqslant n-1, \tag{5.5}\\ 0, & \text { if } \ell=n,\end{cases}
$$

obviously form a basis for $N(C)$. The corresponding basis

$$
\begin{equation*}
\tilde{s}^{[\tau, q, k]}, \quad k=1, \ldots, m_{\tau, q}, \quad q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n, \tag{5.6}
\end{equation*}
$$

for $\mathscr{S}_{d}^{r}(\Delta)$ produced by Algorithm 2.4 satisfies

$$
\begin{align*}
\eta_{j}^{[\tau, q]} \tilde{S}^{[\tau, q, k]} & =a_{j}^{[\tau, q, k]}, & & j \in J_{\tau, q}, \tag{5.7}\\
\eta \tilde{S}^{[\tau, q, k]} & =0, & & \text { all } \quad \eta \in \mathscr{N} \backslash \mathscr{N}_{\tau, q} .
\end{align*}
$$

Denote by

$$
\begin{equation*}
\tilde{\lambda}^{[\tau, q, k]}, \quad k=1, \ldots, m_{\tau, q}, \quad q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n, \tag{5.8}
\end{equation*}
$$

the dual basis for $\mathscr{S}_{d}^{r}(\Delta)^{*}$ determined by the duality condition

$$
\tilde{\lambda}^{[\tau, q, k]} \tilde{S}^{\left[\tau^{\prime}, q^{\prime}, k^{\prime}\right]}= \begin{cases}1, & \text { if } \tau=\tau^{\prime}, q=q^{\prime} \quad \text { and } \quad k=k^{\prime}, \\ 0, & \text { otherwise. }\end{cases}
$$

Theorem 5.3. The basis (5.6) for $\mathscr{S}_{d}^{r}(4)$, where $d \geqslant r 2^{n}+1$, is local. Moreover,

$$
\begin{equation*}
\operatorname{supp} \tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau), \tag{5.9}
\end{equation*}
$$

and the dual basis (5.8) satisfies

$$
\begin{equation*}
\tilde{\lambda}^{[\tau, q, k]} s=0 \quad \text { for all } \quad s \in \mathscr{S}_{d}^{r}(\Delta) \quad \text { such that }\left.\quad s\right|_{\operatorname{star}(\tau)}=0 . \tag{5.10}
\end{equation*}
$$

Proof. By (5.7) we have $\eta_{\tilde{S}^{[\tau, q, k]}}=0$ for all $\eta \in \mathscr{N} \backslash \mathcal{N}_{\tau, q}$. Since $\mathscr{N}_{\tau, q} \cap$ $\mathscr{N}(T) \neq \varnothing$ only if $\tau \subset T,(5.9)$ follows from the fact that $\mathscr{N}(T)$ is a determining set for Π_{d}^{n}, see Theorem 3.2. To show (5.10), we consider the matrix A with columns

$$
\tilde{a}^{[\tau, q, k]}, \quad k=1, \ldots, m_{\tau, q}, \quad q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n .
$$

This matrix is block diagonal,

$$
\begin{aligned}
A & =\operatorname{diag}\left(A_{\tau}\right)_{\tau \in \mathscr{T}}, \\
A_{\tau} & =\operatorname{diag}\left(A_{\tau, q}\right)_{q=0, \ldots, q \ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n,
\end{aligned}
$$

where $A_{\tau, q}:=\left(a_{j}^{[\tau, q, k]}\right)_{j \in J_{\tau, q}} k=1, \ldots, m_{\tau, q}$. Let $B_{\tau, q}$ be a left inverse of $A_{\tau, q}$. Then $B:=\operatorname{diag}\left(B_{\tau}\right)_{\tau \in \mathscr{T}}$, with $B_{\tau}=\operatorname{diag}\left(B_{\tau, q}\right)_{q=0, \ldots, q_{\ell}}, \tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n$, is a left inverse of A. Hence, by Lemma 2.5, $\tilde{\lambda}^{[\tau, q, k]}$ is a linear combination of $\eta_{j}^{[\tau, q]}, j \in J_{\tau, q}$. This implies (5.10) since for every $\eta \in \mathscr{N}_{\tau, q}$ we obviously have $\eta s=0$ if $\left.s\right|_{\operatorname{star}(\tau)}=0$.

Remark 5.4. A similar analysis of the space $\mathscr{S}_{d}^{r}(\Delta), d \geqslant r 2^{n}+1$, was done in [2] by using Bernstein-Bézier smoothness conditions [5]. However, the existence of a local basis for $\mathscr{S}_{d}^{r}(\Delta)$ was shown in [2] only for $n \leqslant 3$. The main advantage of the nodal techniques used here is that the matrix \tilde{C} in (5.1) is block diagonal, while the matrix of Bernstein-Bézier smoothness conditions is block triangular (see [6]).

6. A STABLE LOCAL BASIS FOR $\mathscr{S}_{d}^{r}(\Delta)$

In this section we show that if the sets $\Xi_{\tau, q}$ and Ξ_{T} as well as the bases (5.4) for $N\left(C_{\tau, q}\right)$ are properly chosen, then an appropriately renormalized version of the local basis for $S_{d}^{r}(\Delta)$ constructed above is in addition stable.

Let us denote by ω_{Δ} the shape regularity constant of the triangulation Δ,

$$
\omega_{\Delta}:=\max _{T \in \Delta} \frac{h_{T}}{\rho_{T}},
$$

where h_{T} and ρ_{T} are the diameter of T and the diameter of its inscribed sphere, respectively. Given $M=\bigcup_{T \in \tilde{\Lambda}} T$, where $\tilde{\Delta} \subset \Delta$, we denote by $|M|$ the n-dimensional volume of M.

Definition 6.1. Let \mathscr{S} be a linear subspace of $\mathscr{S}_{d}^{r}(\Delta)$. We say that a basis $\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{m}\right\}$ for \mathscr{S} is L_{p}-stable if there exist constants K_{1}, K_{2} depending only on n, r, d and ω_{Δ}, such that for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$,

$$
K_{1}\|\alpha\|_{\ell_{p}} \leqslant\left\|\sum_{k=1}^{m} \alpha_{k} \tilde{s}_{k}\right\|_{L_{p}(\Omega)} \leqslant K_{2}\|\alpha\|_{\ell_{p}} .
$$

To establish stability of a local basis it seems most convenient to use the following general lemma; see also [23].

Lemma 6.2. Let $\left\{s_{1}, \ldots, s_{m}\right\}$ be a γ-local basis for \mathscr{S}, and let $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ $\subset \mathscr{S}^{*}$ be its dual basis. Suppose that

$$
\begin{equation*}
\left\|s_{k}\right\|_{L_{\infty}(\Omega)} \leqslant C_{1}, \quad k=1, \ldots, m \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{k} s\right| \leqslant C_{2}\|s\|_{L_{\infty}\left(\operatorname{star} \gamma\left(v_{k}\right)\right)}, \quad \text { all } \quad s \in \mathscr{S}, \quad k=1, \ldots, m, \tag{6.2}
\end{equation*}
$$

where supp $s_{k} \subset \operatorname{star}^{\gamma}\left(v_{k}\right)$ as in Definition 5.1. Then for any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$,

$$
\begin{equation*}
K_{1} C_{2}^{-1}\|\alpha\|_{\ell_{p}} \leqslant\left\|\sum_{k=1}^{m} \alpha_{k} \frac{s_{k}}{\left|\operatorname{supp} s_{k}\right|^{1 / p}}\right\|_{L_{p}(\Omega)} \leqslant K_{2} C_{1}\|\alpha\|_{\ell_{p}}, \quad 1 \leqslant p \leqslant \infty \tag{6.3}
\end{equation*}
$$

where K_{1}, K_{2} are some constants depending only on n, r, d, γ and ω_{Δ}.
Proof. Let $s=\sum_{k=1}^{m} \alpha_{k}\left(s_{k} /\left|\operatorname{supp} s_{k}\right|^{1 / p}\right)$. We first prove the upper bound in (6.3). Given an n-simplex $T \in \Delta$, we have by (6.1)

$$
\left\|\left.s\right|_{T}\right\|_{L_{p}(T)} \leqslant C_{1}\left(\# \Sigma_{T}\right)^{1-1 / p} \begin{cases}\left(\sum_{k \in \Sigma_{T}}\left|\alpha_{k}\right|^{p}\right)^{1 / p}, & \text { if } \quad 1 \leqslant p<\infty, \\ \max _{k \in \Sigma_{T}}\left|\alpha_{k}\right|, & \text { if } p=\infty,\end{cases}
$$

where

$$
\begin{equation*}
\Sigma_{T}:=\left\{k: T \subset \operatorname{supp} s_{k}\right\} . \tag{6.4}
\end{equation*}
$$

As in the bivariate case (see Lemmas 3.1 and 3.2 in [23]), it is not difficult to show that

$$
\begin{equation*}
\#\left\{T \in \Delta: T \subset \operatorname{star}^{\gamma}\left(v_{k}\right)\right\} \leqslant \widetilde{K}_{1} \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\frac{\left|\operatorname{star}^{\nu}\left(v_{k}\right)\right|}{|T|}: T \subset \operatorname{star}^{\nu}\left(v_{k}\right)\right\} \leqslant \tilde{K}_{2}, \tag{6.6}
\end{equation*}
$$

where $\widetilde{K}_{1}, \widetilde{K}_{2}$ are some constants depending only on n, γ and ω_{Δ}. Hence, for $1 \leqslant p<\infty$ we have

$$
\|S\|_{L_{p}(\Omega)}^{p}=\sum_{T \in \Delta}\left\|\left.S\right|_{T}\right\|_{L_{p}(T)}^{p} \leqslant \tilde{K}_{1} C_{1}^{p}\left(\# \Sigma_{T}\right)^{p-1}\|\alpha\|_{\ell_{p}}^{p},
$$

which shows that the upper bound will be established for all $1 \leqslant p \leqslant \infty$ if we prove that $\# \Sigma_{T}$ is bounded by a constant depending only on n, r, d, γ and ω_{Δ}. To this end we note that since the basis $\left\{s_{1}, \ldots, s_{m}\right\}$ is γ-local, supp $s_{k} \subset \operatorname{star}^{2 \gamma}(v)$, for all $k \in \Sigma_{T}$, where v is any vertex of T. Therefore, the set $\left\{s_{k}: k \in \Sigma_{T}\right\}$ is linearly independent on $\operatorname{star}^{2 \gamma}(v)$, and its cardinality $\# \Sigma_{T}$ does not exceed the dimension of the space of all piecewise polynomials of degree d on $\operatorname{star}^{2 \gamma}(v)$, i.e., $\# \Sigma_{T} \leqslant N\binom{n+d}{n}$, where N is the number of n-simplices of Δ lying in $\operatorname{star}^{2 \gamma}(v)$. By (6.5), N is bounded by a constant depending only on n, γ and ω_{Δ}, and the assertion follows.

To establish the lower bound in (6.3), we obtain by (6.2),

$$
\left|\alpha_{k}\right|=\left|\operatorname{supp} s_{k}\right|^{1 / p}\left|\lambda_{k} s\right| \leqslant C_{2}\left|\operatorname{supp} s_{k}\right|^{1 / p}\|s\|_{L_{\infty}\left(\operatorname{star} \gamma\left(v_{k}\right)\right)}, \quad k=1, \ldots, m .
$$

Since $\|s\|_{L_{\infty}\left(\operatorname{star}^{\gamma}\left(v_{k}\right)\right)} \leqslant\|s\|_{L \infty(\Omega)}$, this completes the proof in the case $p=\infty$. Suppose $1 \leqslant p<\infty$. By a Nikolskii-type inequality, see e.g. [27, p. 56], for some n-simplex $T_{k} \subset \operatorname{star}^{\gamma}\left(v_{k}\right)$,

$$
\|s\|_{L_{\infty}\left(\operatorname{star} \gamma\left(v_{k}\right)\right)}=\left\|\left.s\right|_{T_{k}}\right\|_{L_{\infty}\left(T_{k}\right)} \leqslant \widetilde{K}_{3}\left|T_{k}\right|^{-1 / p}\left\|\left.s\right|_{T_{k}}\right\|_{L_{p}\left(T_{k}\right)}
$$

where \widetilde{K}_{3} is a constant depending only on n and d. Since $\operatorname{supp} s_{k} \subset$ $\operatorname{star}^{\gamma}\left(v_{k}\right)$, we have by (6.6),

$$
\frac{\left|\operatorname{supp} s_{k}\right|}{\left|T_{k}\right|} \leqslant \tilde{K}_{2} .
$$

Therefore,

$$
\sum_{k=1}^{m}\left|\alpha_{k}\right|^{p} \leqslant \tilde{K}_{2}\left(\tilde{K}_{3} C_{2}\right)^{p} \sum_{k=1}^{m} \int_{T_{k}}|s|^{p}
$$

We now have to bound the number of appearances of a given n-simplex T_{k} on the right-hand side of the above inequality. If $T_{k_{1}}=T_{k_{2}}$, then $\operatorname{star}^{\gamma}\left(v_{k_{1}}\right)$ $\cap \operatorname{star}^{\gamma}\left(v_{k_{2}}\right) \neq \varnothing$. Hence, $\operatorname{supp} s_{k_{2}} \subset \operatorname{star}^{3 \gamma}\left(v_{k_{1}}\right)$. Thus, for all k such that $T_{k}=T_{k_{1}}$,

$$
\operatorname{supp} s_{k} \subset \operatorname{sta}^{3 \gamma}\left(v_{k_{1}}\right) .
$$

The set $\left\{s_{k}: T_{k}=T_{k_{1}}\right\}$ is linearly independent on $\operatorname{star}^{3 \gamma}\left(v_{k_{1}}\right)$, and it can be shown as above that its cardinality is bounded by a constant \widetilde{K}_{4} depending only on n, γ and ω_{Δ}. Therefore,

$$
\sum_{k=1}^{m} \int_{T_{k}}|s|^{p} \leqslant \tilde{K}_{4} \int_{\Omega}|s|^{p},
$$

which completes the proof.
We are ready to formulate our main result about stability of the local basis constructed in Section 5. For each $\tau \in \mathscr{T}$, denote by h_{τ} the diameter of the set $\operatorname{star}(\tau)$. (This is compatible with the above notation h_{T} for $T \in \mathscr{T}_{n}=\Delta$ since $\operatorname{star}(T)=T$.)

Theorem 6.3. Suppose that

(1) every $\Xi_{\tau, q}, q=0, \ldots, q_{\ell}, \tau \in \mathscr{T}_{\ell}, 1 \leqslant \ell \leqslant n$ (where $\Xi_{T, 0}:=\Xi_{T}$ if $T \in \mathscr{T}_{n}$), is chosen to be the set of uniformly distributed points in the interior of τ, as defined in (3.5); and
(2) for each $q=0, \ldots, q_{\ell}$ and $\tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n$, the vectors

$$
\begin{equation*}
a^{[\tau, q, k]}=\left(a_{j}^{[\tau, q, k]}\right)_{j \in J_{\tau, q}}, \quad k=1, \ldots, m_{\tau, q}, \tag{6.7}
\end{equation*}
$$

form an orthonormal basis for $N\left(C_{\tau, q}\right)$.
Let $\tilde{S}^{[\tau, q, k]}$ be the local basis functions for $\mathscr{S}_{d}^{r}(\Delta), d \geqslant r 2^{n}+1$, constructed as in Section 5. Then for every $1 \leqslant p \leqslant \infty$, the splines

$$
\begin{gathered}
h_{\tau}^{-q}|\operatorname{star}(\tau)|^{-1 / p} \tilde{S}^{[\tau, q, k]}, \quad k=1, \ldots, m_{\tau, q}, \\
q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n,
\end{gathered}
$$

form an L_{p}-stable local basis for $\mathscr{S}_{d}^{r}(\Delta)$.
Proof. As shown in Section 5, the splines $\tilde{s}^{[\tau, q, k]}$ are 1-local, and $\operatorname{supp} \tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau)$. By (6.6),

$$
\left|\operatorname{supp} \tilde{s}^{[\tau, q, k]}\right| \leqslant|\operatorname{star}(\tau)| \leqslant \widetilde{K}_{2}\left|\operatorname{supp} \tilde{s}^{[\tau, q, k]}\right|,
$$

where \tilde{K}_{2} depends only on n and ω_{Δ}. Hence, in view of Lemma 6.2, the theorem will be established once we prove that

$$
\begin{equation*}
\left\|\tilde{S}^{[\tau, q, k]}\right\|_{L_{\infty}(\Omega)} \leqslant C_{1} h_{\tau}^{q}, \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tilde{\lambda}^{[\tau, q, k]} s\right| \leqslant C_{2} h_{\tau}^{-q}\|s\|_{L_{\infty}(\operatorname{star}(\tau))}, \quad \text { all } \quad s \in \mathscr{S}_{d}^{r}(\Delta), \tag{6.9}
\end{equation*}
$$

where the constants C_{1}, C_{2} depend only on n, r, d and ω_{Δ}.
We first show (6.8). Since supp $\tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau)$, we have $\left\|\tilde{S}^{[\tau, q, k]}\right\|_{L_{\infty}(\Omega)}$ $=\left\|\tilde{S}^{[\tau, q, k]}\right\|_{L_{\infty}(\operatorname{star}(\tau))}$. Let T be an n-simplex in $\operatorname{star}(\tau)$, and let \mathscr{H}_{T} be the Hermite interpolation operator defined in (3.4). Since $\left.\tilde{s}^{[\tau, q, k]}\right|_{T}=$ $\left.\mathscr{H}_{T} \tilde{S}^{[\tau, q, k]}\right|_{T}$, we have by Lemma 3.3,

$$
\left\|\left.\tilde{S}^{[\tau, q, k]}\right|_{T}\right\|_{L_{\infty}(T)} \leqslant \tilde{K}_{5} \max _{\eta \in \mathcal{N}(T)} h_{T}^{q(\eta)}\left|\eta \tilde{S}^{[\tau, q, k]}\right|,
$$

where \widetilde{K}_{5} depends only on n, r and d. Now, by (5.7), $\eta^{[\tau, q, k]}=0$ for all $\eta \in \mathscr{N}(T) \backslash \mathscr{N}_{\tau, q}$, and

$$
\eta_{j}^{[\tau, q]} \tilde{S}^{[\tau, q, k]}=a_{j}^{[\tau, q, k]}, \quad j \in J_{\tau, q} .
$$

Since the vectors $a^{[\tau, q, k]}, k=1, \ldots, m_{\tau, q}$, are orthonormal, we have $\left|a_{j}^{[\tau, q, k]}\right| \leqslant 1$. Taking into account that $q(\eta)=q$ for all $\eta \in \mathscr{N}_{\tau, q}$, we arrive at the estimate

$$
\| \tilde{\left.S^{[\tau, q, k]}\right|_{T} \|_{L_{\infty}(T)} \leqslant \tilde{K}_{5} h_{T}^{q} \leqslant \widetilde{K}_{5} h_{\tau}^{q}, ~, ~ . ~}
$$

and (6.8) is proved.
By our hypotheses, the columns of the matrix

$$
\begin{equation*}
A_{\tau, q}=\left[a_{j}^{[\tau, q, k]}\right]_{j \in J_{\tau, q}, k=1, \ldots, m_{\tau, q}} \tag{6.10}
\end{equation*}
$$

are orthonormal. Hence, $A_{\tau, q}^{T}$ is a left inverse of $A_{\tau, q}$. By Lemma 2.5 and the proof of Theorem 5.3, it follows that the dual functional $\tilde{\lambda}^{[\tau, q, k]}$ can be computed as

$$
\tilde{\lambda}^{[\tau, q, k]}=\sum_{j \in J_{t, q}} a_{j}^{[\tau, q, k]} \eta_{j}^{[\tau, q]} .
$$

Therefore, for any $s \in \mathscr{S}_{d}^{r}(\Delta)$,

$$
\left|\tilde{\lambda}^{[\tau, q, k]} S\right|=\left|\sum_{j \in J_{\tau, q}} a_{j}^{[\tau, q, k]} \eta_{j}^{[\tau, q]} s\right| \leqslant \# J_{\tau, q} \max _{j \in J_{\tau, q}}\left|\eta_{j}^{[\tau, q]} s\right| .
$$

Given $j \in J_{\tau, q}$, let T be an n-simplex such that $\tau \subset T$ and $\eta_{j}^{[\tau, q]} \in \mathscr{N}(T)$. Since $\eta_{j}^{[\tau, q]}$ is a nodal functional of order q, we have by Markov inequality (see, e.g. [13]),

$$
\left|\eta_{j}^{[\tau, q]} s\right|=\left|\eta_{j}^{[\tau, q]} s\right|_{T}\left|\leqslant \widetilde{K}_{6} \rho_{T}^{-q}\left\|\left.s\right|_{T}\right\|_{L_{\infty}(T)} \leqslant \widetilde{K}_{6} \omega_{4}^{q} h_{T}^{-q}\|s\|_{L_{\infty}(\operatorname{star}(\tau))},\right.
$$

where \widetilde{K}_{6} is a constant depending only on n and d. Since $\# J_{\tau, q}=\# \mathscr{N}_{\tau, q}$ is bounded above by a constant depending only on n, r, d and ω_{Δ}, the estimate (6.9) follows, and the proof is complete.

It is easy to see that Theorem 6.3 remains valid for any $\Xi_{\tau, q}$ such that the Hermite interpolation operator defined by (3.4) satisfies (3.6), and for any choice of the bases (6.7) for $N\left(C_{\tau, q}\right)$ such that the condition number of the matrix (6.10) is bounded by a constant K depending only on n, r, d and ω_{Δ}; compare [6]. However, there is a good reason to prefer, at least in practice, an orthonormal basis for $N\left(C_{\tau, q}\right)$, as explained in the following remark.

Remark 6.4. There is a numerically efficient way to compute an orthonormal basis $a^{[\tau, q, k]}=\left(a_{j}^{[\tau, q, k]}\right)_{j \in J_{t, q}}, k=1, \ldots, m_{\tau, q}$, for each $N\left(C_{\tau, q}\right)$, as required in the above theorem. Namely, construct by an appropriate algorithm a singular value decomposition $C_{\tau, q}=Q_{L} X Q_{R}^{T}$ of the matrix $C_{\tau, q}$, where Q_{L}, Q_{R} are orthogonal matrices, and $X=[D O], D=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right)$, with $\sigma_{1} \geqslant \cdots \geqslant \sigma_{p} \geqslant 0$ being the singular values of $C_{\tau, q}$, see e.g. [29]. Obviously, $m_{\tau, q}$ is equal to the number of zero columns in X (including the columns corresponding to zero singular values). Hence, the columns of the matrix $\left[O I_{m_{t, q}}\right]^{T}$ constitute an orthonormal basis for $N(X)$. Since $C_{\tau, q} Q_{R}=Q_{L} X$, the columns of $A_{\tau, q}=Q_{R}\left[O I_{m_{\tau, q}}\right]^{T}$ form the desired orthonormal basis for $N\left(C_{\tau, q}\right)$. Thus, the matrix $A_{\tau, q}$ consists of the last $m_{\tau, q}$ columns of Q_{R}.

7. SUPERSPLINE SPACES

In this section we construct stable local bases for the superspline subspaces of $\mathscr{S}_{d}^{r}(\Delta)$.

Definition 7.1. Let $\rho=\left(\rho_{\tau}\right)_{\tau \in \mathscr{T} \backslash\left(\mathscr{T}_{n-1} \cup \mathscr{T}_{n}\right)}$ be a sequence of integers satisfying

$$
\begin{equation*}
r \leqslant \rho_{\tau} \leqslant 2^{n-\ell-1}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n-2 . \tag{7.1}
\end{equation*}
$$

The linear space of splines

$$
\begin{gather*}
\mathscr{S}_{d}^{r} \rho(\Delta):=\left\{s \in \mathscr{S}_{d}^{r}(\Delta): s \text { is } \rho_{\tau} \text {-times differentiable across } \tau,\right. \\
\text { for all } \left.\tau \in \mathscr{T} \backslash\left(\mathscr{T}_{n-1} \cup \mathscr{T}_{n}\right)\right\} \tag{7.2}
\end{gather*}
$$

is called a superspline space.
In the limiting case $\rho_{\tau}=2^{n-\ell-1}, \tau \in \mathscr{T} \backslash\left(\mathscr{T}_{n-1} \cup \mathscr{T}_{n}\right)$, the superspline spaces were introduced and studied in [8-11], see also [3, 4]. In particular, local bases for $\mathscr{S}_{d}^{r_{d} \rho}(\Delta)$, where $\rho_{\tau}=2^{n-\ell-1}$, were constructed in [11] and [4]. For general ρ_{τ}, but only in the bivariate case $n=2$, the superspline spaces were explored in [22,28] and, more recently, in [18, 19].

As we will see, our method of construction of a stable local basis can be applied to the spaces (7.2). We first have to extend the system \mathscr{R} of smoothness conditions defined in (4.4)-(4.8) to a larger system $\hat{\mathscr{R}}$, by allowing a larger range of r^{\prime} in (4.4) and (4.5). Namely, we include in the extended systems $\hat{\mathscr{R}}_{v, q}$ and $\hat{\mathscr{R}}_{\tau, q, \xi}$ all conditions (4.4) and (4.5), respectively, where $0 \leqslant r^{\prime} \leqslant \min \left\{\rho_{\tau}, q\right\}$. The systems $\mathscr{R}_{F, q, \xi}$ are not enlarged, i.e., we set $\hat{\mathscr{R}}_{F, q, \xi}=\mathscr{R}_{F, q, \xi}$.

By the method of proof of Theorem 4.4 it is not difficult to establish the following analogue of it.

Theorem 7.2. The set $\hat{\mathscr{R}}$ is a complete system of linear relations for \mathcal{N} over $\mathscr{S}_{d}^{r} r_{d}(\Delta)$.

It is easy to see that the matrix \hat{C} of the system $\hat{\mathscr{R}}$ possesses a block diagonal structure similar to the structure of the matrix C considered in Section 5. Therefore, all results about the dimension and the local bases carry over to the superspline spaces. Thus, we have

$$
\begin{aligned}
\operatorname{dim} \mathscr{S}_{d}^{r, p}(\Delta)= & \# \mathcal{N}-\sum_{\tau \in \mathscr{T} \backslash \mathscr{T}_{n}} \operatorname{rank} \hat{C}_{\tau} \\
= & \# \mathscr{N}-\sum_{v \in \mathscr{T}_{0}} \sum_{q=0}^{r^{n-1}} \operatorname{rank} \hat{C}_{v, q} \\
& -\sum_{\ell=1}^{n-1} \sum_{\tau \in \mathscr{T}_{\ell}} \sum_{q=0}^{r 2^{n-\ell-1}} \sum_{\xi \in \Xi_{t, q}} \operatorname{rank} \hat{C}_{\tau, q, \xi},
\end{aligned}
$$

where $\hat{C}_{\tau}, \hat{C}_{v, q}$ and $\hat{C}_{\tau, q, \xi}$ are the appropriate blocks of \hat{C}. Define the splines

$$
\begin{equation*}
\hat{s}^{[\tau, q, k]}, \quad k=1, \ldots, \hat{m}_{\tau, q}, \quad q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n, \tag{7.4}
\end{equation*}
$$

by the condition

$$
\begin{align*}
\eta_{j}^{[\tau, q]} \hat{S}^{[\tau, q, k]} & =\hat{a}_{j}^{[\tau, q, k]}, & & j \in J_{\tau, q}, \tag{7.5}\\
\eta_{\hat{S}^{[\tau, q, k]}} & =0, & & \text { all } \quad \eta \in \mathscr{N} \backslash \mathscr{N}_{\tau, q},
\end{align*}
$$

where

$$
\begin{equation*}
\hat{a}^{[\tau, q, k]}=\left(\hat{a}_{j}^{[\tau, q, k]}\right)_{j \in J_{\tau, q}}, \quad k=1, \ldots, \hat{m}_{\tau, q}, \tag{7.6}
\end{equation*}
$$

is a basis for $N\left(\hat{C}_{\tau, q}\right)$.

Theorem 7.3. The splines (7.4) form a local basis for $\mathscr{S}_{d}^{r_{d} \rho}(\Delta)$, where ρ satisfies (7.1), and $d \geqslant r 2^{n}+1$. Moreover,

$$
\begin{equation*}
\operatorname{supp} \hat{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau), \tag{7.7}
\end{equation*}
$$

and the dual basis (5.8) satisfies

$$
\begin{equation*}
\hat{\lambda}^{[\tau, q, k]} s=0 \quad \text { for all } \quad s \in \mathscr{S}_{d}^{r}(\Delta) \quad \text { such that }\left.\quad s\right|_{\operatorname{star}(\tau)}=0 . \tag{7.8}
\end{equation*}
$$

Since (7.4) is a local basis for $\mathscr{S}_{d}^{r}(\Delta)$, Lemma 6.2 can be applied, and the same argument as in the proof of Theorem 6.3 shows that the following result holds.

Theorem 7.4. Suppose that

(1) every $\Xi_{\tau, q}, q=0, \ldots, q_{\ell}, \tau \in \mathscr{T}_{\ell}, 1 \leqslant \ell \leqslant n$ (where $\Xi_{T, 0}:=\Xi_{T}$ if $T \in \mathscr{T}_{n}$), is chosen to be the set of uniformly distributed points in the interior of τ, as defined in (3.5), and
(2) for each $q=0, \ldots, q_{\ell}$ and $\tau \in \mathscr{T}_{\ell}, 0 \leqslant \ell \leqslant n$, vectors $\hat{a}^{[\tau, q, k]}=$ $\left(\hat{a}_{j}^{[\tau, q, k]}\right)_{j \in J_{\tau, q}}, k=1, \ldots, m_{\tau, q}$, form an orthonormal basis for $N\left(\hat{C}_{\tau, q}\right)$.

Let $\hat{S}^{[\tau, q, k]}$ be the local basis functions (7.4) for $\mathscr{S}_{d}^{r_{d} \rho}(\Delta)$, where ρ satisfies (7.1), and $d \geqslant r 2^{n}+1$. Then for every $1 \leqslant p \leqslant \infty$, the splines

$$
\begin{gathered}
h_{\tau}^{-q}|\operatorname{star}(\tau)|^{-1 / p} \hat{S} \hat{S}^{[\tau, q, k]}, \quad k=1, \ldots, m_{\tau, q}, \\
q=0, \ldots, q_{\ell}, \quad \tau \in \mathscr{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n,
\end{gathered}
$$

form an L_{p}-stable local basis for $\mathscr{S}_{d}^{r_{d} \rho}(\Delta)$.

ACKNOWLEDGMENTS

The author is grateful to the editor of this paper and to a referee for helpful suggestions for improving the manuscript and for pointing out a number of misprints in its original version.

REFERENCES

1. P. Alfeld, B. Piper, and L. L. Schumaker, Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree $d \geqslant 4 r+1$, Comput. Aided Geom. Design 4 (1987), 105-123.
2. P. Alfeld, L. L. Schumaker, and M. Sirvent, On dimension and existence of local bases for multivariate spline spaces, J. Approx. Theory 70 (1992), 243-264.
3. P. Alfeld and M. Sirvent, A recursion formula for the dimension of super spline spaces of smoothness r and degree $d>r 2^{k}$, in "Multivariate Approximation Theory IV, ISNM 90" (C. Chui, W. Schempp, and K. Zeller, Eds.), pp. 1-8, Birkhäuser, Basel, 1989.
4. P. Alfeld and M. Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp. 57(195) (1991), 299-308.
5. C. de Boor, B-form basics, in "Geometric Modeling: Algorithms and New Trends" (G. E. Farin, Ed.), pp. 131-148, SIAM, Philadelphia, 1987.
6. C. de Boor, A local basis for certain smooth bivariate pp spaces, in "Multivariate Approximation Theory IV, ISNM 90" (C. Chui, W. Schempp, and K. Zeller, Eds.), pp. 25-30, Birkhäuser, Basel, 1989.
7. C. K. Chui, D. Hong, and R.-Q. Jia, Stability of optimal order approximation by bivariate splines over arbitrary triangulations, Trans. Amer. Math. Soc. 347 (1995), 3301-3318.
8. C. K. Chui and M.-J. Lai, On bivariate vertex splines, in "Multivariate Approximation Theory III, ISNM 75" (W. Schempp and K. Zeller, Eds.), pp. 84-115, Birkhäuser, Basel, 1985.
9. C. K. Chui and M.-J. Lai, On bivariate super vertex splines, Constr. Approx. 6 (1990), 399-419.
10. C. K. Chui and M.-J. Lai, On multivariate vertex splines and applications, in "Topics in Multivariate Approximation" (C. K. Chui, L. L. Schumaker, and F. Utreras, Eds.), pp. 19-36, Academic Press, New York, 1987.
11. C. K. Chui and M.-J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory 60 (1990), 245-343.
12. P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, The Netherlands, 1978.
13. P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in \mathbb{R}^{N} with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177-199.
14. W. Dahmen, P. Oswald, and X.-Q. Shi, C^{1}-hierarchical bases, J. Comput. Appl. Math. 51 (1994), 37-56.
15. O. Davydov, Locally linearly independent basis for C^{1} bivariate splines, in "Mathematical Methods for Curves and Surfaces II" (M. Dæhlen, T. Lyche, and L. Schumaker, Eds.), pp. 71-78, Vanderbilt University Press, Nashville/London, 1998.
16. O. Davydov, G. Nürnberger, and F. Zeilfelder, Bivariate spline interpolation with optimal approximation order, Constr. Approx. 17 (2001), 181-208.
17. O. Davydov and L. L. Schumaker, Stable local nodal bases for C^{1} bivariate polynomial splines, in "Curve and Surface *Fitting: Saint-Malo 1999" (A. Cohen, C. Rabut, and L. L. Schumaker, Eds.), pp. 171-180, Vanderbilt University Press, Nashville, TN, 2000.
18. O. Davydov and L. L. Schumaker, Locally linearly independent bases for bivariate polynomial splines, Adv. Comput. Math. 13 (2000), 355-373.
19. O. Davydov and L. L. Schumaker, On stable local bases for bivariate polynomial spline spaces, Constr. Approx., to appear.
20. G. Farin, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986), 83-127.
21. D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), 56-75.
22. A. Ibrahim and L. L. Schumaker, Super spline spaces of smoothness r and degree $d \geqslant 3 r+2$, Constr. Approx. 7 (1991), 401-423.
23. M.-J. Lai and L. L. Schumaker, On the approximation power of bivariate splines, Adv. Comput. Math. 9 (1998), 251-279.
24. A. Le Méhauté, Unisolvent interpolation in \mathbb{R}^{n} and the simplicial polynomial finite element method, in "Topics in Multivariate Approximation" (C. K. Chui, L. Schumaker, and F. Utreras, Eds.), pp. 141-151, Academic Press, New York, 1987.
25. A. Le Méhauté, Nested sequences of triangular finite element spaces, in "Multivariate Approximation: Recent Trends and Results" (W. Haussman, K. Jetter, and M. Reimer, Eds.), pp. 133-145, Akademie-Verlag, Berlin, 1997.
26. J. Morgan and R. Scott, A nodal basis for C^{1} piecewise polynomials of degree $n \geqslant 5$, Math. Comp. 29(131) (1975), 736-740.
27. P. Oswald, "Multilevel Finite Element Approximation," Teubner, Stuttgart, 1994.
28. L. L. Schumaker, On super splines and finite elements, SIAM J. Numer. Anal. 26 (1989), 997-1005.
29. G. W. Stewart, "Matrix Algorithms, Volume I: Basic Decompositions," SIAM, Philadelphia, 1998.
30. A. Ženišek, Polynomial approximation on tetrahedrons in the finite element method, J. Approx. Theory 7 (1973), 334-351.
