Stable Local Bases for Multivariate Spline Spaces

Oleg Davydov

Mathematical Institute, Justus Liebig University, D-35392 Giessen, Germany E-mail: oleg.davydov@math.uni-giessen.de

Communicated by Carl de Boor

Received March 14, 2000; accepted in revised form February 20, 2001; published online June 18, 2001

We present an algorithm for constructing stable local bases for the spaces $\mathscr{S}_d^r(\varDelta)$ of multivariate polynomial splines of smoothness $r \ge 1$ and degree $d \ge r2^n + 1$ on an arbitrary triangulation \varDelta of a bounded polyhedral domain $\Omega \subset \mathbb{R}^n$, $n \ge 2$. © 2001 Academic Press

1. INTRODUCTION

Let Δ be a *triangulation* of a bounded polyhedral domain $\Omega \subset \mathbb{R}^n$, i.e., Δ is a finite set of non-degenerate *n*-simplices such that

(1) $\Omega = \bigcup_{T \in \varDelta} T;$

(2) the interiors of the simplices in Δ are pairwise disjoint; and

(3) each facet of a simplex $T \in \Delta$ either lies on the boundary of Ω or is a common face of exactly two simplices in Δ .

Given $1 \leq r \leq d$, we consider the *spline space*

 $\mathscr{S}_{d}^{r}(\varDelta) := \{ s \in C^{r}(\varOmega) : s \mid_{T} \in \Pi_{d}^{n} \text{ for all } n \text{-simplices } T \in \varDelta \},\$

where Π_d^n is the linear space of all *n*-variate polynomials of total degree at most *d*. It is well-known that dim $\Pi_d^n = \binom{n+d}{n}$.

The application of splines in numerical computations requires efficient algorithms for constructing locally supported bases for the space $\mathscr{S}_d^r(\Delta)$ or its subspaces (such as finite element spaces). Moreover, if a *local* basis $\{s_1, ..., s_m\}$ for $\mathscr{S}_d^r(\Delta)$ is in addition *stable*, i.e., for all $\alpha = (\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$,

$$K_1 \| \alpha \|_{\ell_p} \leq \left\| \sum_{k=1}^m \alpha_k s_k \right\|_{L_p(\Omega)} \leq K_2 \| \alpha \|_{\ell_p},$$

0021-9045/01 \$35.00 Copyright © 2001 by Academic Press All rights of reproduction in any form reserved. then a *nested* sequence of spaces

$$\mathscr{S}_{d}^{r}(\varDelta_{1}) \subset \mathscr{S}_{d}^{r}(\varDelta_{2}) \subset \cdots \subset \mathscr{S}_{d}^{r}(\varDelta_{q}) \subset \cdots,$$
(1.1)

may be used for designing multilevel methods of approximation on a bounded domain $\Omega \subset \mathbb{R}^n$, see e.g. [27] and references therein. In particular, the sequence (1.1) constitutes a *multiresolution analysis* on Ω if the maximal diameter of the triangles in Δ_q tends to zero as $q \to \infty$, and if the constants $0 < K_1, K_2 < \infty$ are independent of q. Note that the bases for the *full space* $\mathscr{S}_d^r(\Delta)$ are particularly interesting since $\mathscr{S}_d^r(\Delta_q) \subset \mathscr{S}_d^r(\Delta_{q+1})$ if Δ_{q+1} is a *refinement* of Δ_q . (This is not the case for the finite element subspaces of $\mathscr{S}_d^r(\Delta)$ when $r \ge 1$; see [14, 25, 27].)

The famous *B*-splines constitute a stable locally supported basis for the space $\mathscr{G}_d^r(\Delta)$ in the one-dimensional case n = 1 for all $d \ge r + 1$. Moreover, the dual basis is also local and therefore provides a quasi-interpolant possessing optimal approximation order. There are well known constructions of local bases for $\mathscr{G}_d^r(\Delta)$ in the bivariate case n = 2 for all $d \ge 3r + 2$, see [1, 21, 22, 26]. Stable local bases were constructed in [7, 23] for some superspline subspaces, and in [17, 19] for the full bivariate spline spaces $\mathscr{G}_d^r(\Delta)$, $d \ge 3r + 2$. In the trivariate case n = 3 local bases are known for all $d \ge 8r + 1$ [2]. It was conjected in [2] that in general locally supported bases for $\mathscr{G}_d^r(\Delta)$ exist if $d \ge r(2^n - 1) + n$.

The main objective of this paper is to construct stable locally supported bases for $\mathscr{S}_d^r(\Delta)$ and its superspline subspaces for all $n \ge 2$ and $r \ge 1$ provided $d \ge r2^n + 1$.

We make use of the *nodal approach* originated in the finite element method, see e.g. [12], and extended to the problems of spline spaces on general triangulations in [26] and more recently in [8–11, 15, 16, 17]. We show that in the multivariate case the *nodal smoothness conditions* can be better localized than usual Bernstein–Bézier smoothness conditions [5, 20]. The key point for our analysis is that certain matrices associated with the smoothness conditions have a block diagonal structure, which in the same time makes it possible to handle them efficiently in numerical computations, see Sections 5 and 6. In particular, the dimension of any given spline space $\mathscr{G}_d^r(\varDelta)$, $d \ge r2^n + 1$, can be efficiently computed by a formula obtained in Section 5.

The paper is organized as follows. In Section 2 we give some definitions and preliminary lemmas. The nodal functionals that we use are described in Section 3. Section 4 is devoted to a detailed analysis of nodal smoothness conditions. In Section 5 we construct local bases for $\mathscr{G}_d^r(\Delta)$, $d \ge r2^n + 1$. In Section 6 we show how to achieve stability of these bases. Finally, in Section 7 we extend the results to the superspline subspaces of $\mathscr{G}_d^r(\Delta)$.

2. PRELIMINARIES

2.1. Bases and Minimal Determining Sets

It is obvious that the linear space $\mathscr{S}_d^r(\Delta)$ has finite dimension. In this subsection we consider an abstract finite-dimensional linear space \mathscr{S} , although in all our applications we have $\mathscr{S} \subset \mathscr{S}_d^r(\Delta)$.

Let \mathscr{S}^* denote, as usual, the dual space of linear functionals on \mathscr{S} . Given a basis $\{s_j\}_{i \in J}$ for \mathscr{S} , its *dual basis* is a basis $\{\lambda_j\}_{j \in J}$ for \mathscr{S}^* such that

$$\lambda_i s_j = \delta_{i,j}, \quad \text{all} \quad i, j \in J. \tag{2.1}$$

It is easy to see that the dual basis $\{\lambda_j\}_{j \in J}$ is uniquely determined by $\{s_j\}_{j \in J}$, and vice versa, a basis $\{\lambda_j\}_{j \in J}$ for \mathscr{S}^* uniquely determines a basis $\{s_j\}_{j \in J}$ for \mathscr{S} satisfying (2.1).

In order to construct a basis $\{s_j\}_{j \in J}$ for a spline space \mathscr{S} it is often useful to find first a basis $\{\lambda_j\}_{j \in J}$ for \mathscr{S}^* and then determine $\{s_j\}_{j \in J}$ from the duality condition (2.1). Usually, the required basis for \mathscr{S}^* can be selected by an algorithm from a larger set $\Lambda \subset \mathscr{S}^*$ that spans \mathscr{S}^* . A common example of such a set Λ is the set of linear functionals picking off a coefficient of the Bernstein-Bézier representation of splines $s \in \mathscr{S}$, see e.g. [2]. Keeping in mind the tradition upheld in the literature on bivariate and multivariate splines, we will use the following terminology.

DEFINITION 2.1. Any finite spanning set for \mathscr{S}^* is called a *determining* set for \mathscr{S} . Any basis for \mathscr{S}^* is called a *minimal determining set* for \mathscr{S} .

A standard argument in linear algebra shows that a set $\Lambda \subset \mathscr{G}^*$ is a determining set for \mathscr{G} if and only if $\lambda s = 0$ for all $\lambda \in \Lambda$ implies s = 0 whenever $s \in \mathscr{G}$. Moreover, a determining set Λ is a minimal determining set for \mathscr{G} if and only if no proper subset of Λ is a determining set. Since every linear functional on \mathscr{G} is well-defined on any subspace $\widetilde{\mathscr{G}}$ of \mathscr{G} , it is easy to see that a determining set for \mathscr{G} is also a determining set for $\widetilde{\mathscr{F}}$.

Suppose Λ is a determining set for \mathscr{S} . If Λ is not a minimal determining set for \mathscr{S} , then Λ is linearly dependent. It is particularly useful to know a complete system of linear relations for Λ .

DEFINITION 2.2. Let $\Lambda = {\lambda_j}_{j \in J} \subset \mathscr{S}^*$ be a determining set for \mathscr{S} . Suppose that the functionals λ_j satisfy linear conditions

$$\sum_{j \in J} c_{i, j} \lambda_j = 0, \qquad i \in I,$$
(2.2)

where $c_{i, j}$ are some real coefficients. We say that (2.2) is a *complete system* of linear relations for Λ over \mathscr{S} if for any $a = (a_j)_{j \in J}$, with $a_j \in \mathbb{R}, j \in J$, such that

$$\sum_{j \in J} c_{i,j} a_j = 0, \qquad i \in I,$$
(2.3)

there exists an element $s \in \mathcal{S}$ such that $\lambda_j s = a_j$ for all $j \in J$.

Note that the element $s \in \mathcal{S}$ as above is necessarily *unique*. Indeed, if there are $s_1, s_2 \in \mathcal{S}$ such that $\lambda_j s_1 = \lambda_j s_2 = a_j$ for all $j \in J$, then $\lambda_j (s_1 - s_2) = 0$, $j \in J$, which implies $s_1 = s_2$ since Λ is a determining set for \mathcal{S} .

Let $C := (c_{i, j})_{i \in I, j \in J}$. Then (2.3) means that the vector *a* lies in the null space $N(C) := \{a: Ca^T = 0\}$ of the matrix *C*. Thus, there is a 1–1 correspondence between elements $s \in \mathcal{S}$ and vectors $a \in N(C)$, where $a = (a_j)_{j \in J}$, $a_j = \lambda_j s$. In particular, the dimension of \mathcal{S} can be computed as follows.

LEMMA 2.3. We have

$$\dim \mathcal{S} = \dim N(C) = \# \Lambda - \operatorname{rank} C. \tag{2.4}$$

Moreover, given a determining set Λ for \mathscr{S} and a complete system of linear relations for Λ over \mathscr{S} with matrix C, it is straightforward to construct a basis for \mathscr{S} ; see also [6].

ALGORITHM 2.4. Suppose $\Lambda = {\lambda_j}_{j \in J} \subset \mathscr{S}^*$ is a determining set for \mathscr{S} , and (2.2) is a complete system of linear relations for Λ over \mathscr{S} . Let $a^{[k]} = (a_j^{[k]})_{j \in J}, k = 1, ..., m$, form a basis for the null space N(C) of C. For each k = 1, ..., m, construct the unique element $\tilde{s}_k \in \mathscr{S}$ satisfying $\lambda_j \tilde{s}_k = a_j^{[k]}$ for all $j \in J$. Then ${\tilde{s}_1, ..., \tilde{s}_m}$ is a basis for \mathscr{S} .

It is not difficult to determine corresponding minimal determining set, i.e., the basis $\{\tilde{\lambda}_1, ..., \tilde{\lambda}_m\}$ for \mathscr{S}^* dual to $\{\tilde{s}_1, ..., \tilde{s}_m\}$. Let

$$A := [a_j^{[k]}]_{j \in J, \, k = 1, \, \dots, \, m}.$$

Since the columns $a^{[k]}$ of this matrix are linearly independent, A has full column rank. Hence, there exists a left inverse of A, i.e., a matrix

$$B = [b_{k, j}]_{k=1, ..., m, j \in J}$$

satisfying $BA = I_m$, where I_m is the $m \times m$ identity matrix. Note that B is not unique in general.

271

LEMMA 2.5. The dual basis $\{\tilde{\lambda}_1, ..., \tilde{\lambda}_m\}$ can be computed by

$$\tilde{\lambda}_k = \sum_{j \in J} b_{k, j} \lambda_j, \qquad k = 1, ..., m.$$

Proof. It is straightforward to check that the duality condition (2.1) is satisfied.

2.2. Geometry of a Triangulation in \mathbb{R}^n

Recall that an ℓ -simplex τ $(0 \leq \ell \leq n)$ is the convex hull $\langle v_0, ..., v_\ell \rangle$ of $\ell + 1$ points $v_0, ..., v_\ell \in \mathbb{R}^n$ called *vertices* of τ . The simplex τ is *non-degenerate* if its ℓ -dimensional volume is non-zero and *degenerate* otherwise. The *dimension* of a non-degenerate ℓ -simplex is ℓ . By the *interior* of an ℓ -simplex we mean its ℓ -dimensional interior. The convex hull of a subset of $\{v_0, ..., v_\ell\}$ containing $m + 1 \leq \ell + 1$ elements is an *m*-face of τ . Thus, an *m*-face is itself an *m*-simplex. An $(\ell - 1)$ -face of τ is also called a *facet* of τ , and any 1-face of τ is also called an *edge* of τ . Note that the only ℓ -face of τ is τ itself, and the vertices of τ are its 0-faces. (We identify a vertex v and its convex hull $\{v\}$.)

Denote by \mathcal{T}_{ℓ} the set of all ℓ -faces of the simplices in Δ ($\ell = 0, ..., n-1$) and set

$$\mathscr{T} := \bigcup_{\ell=0}^{n} \mathscr{T}_{\ell},$$

where $\mathcal{T}_n := \Delta$. We will also use notation $\mathcal{V} := \mathcal{T}_0$, $\mathcal{E} := \mathcal{T}_1$ and $\mathcal{F} := \mathcal{T}_{n-1}$ for the sets of all vertices, edges and facets of Δ , respectively. The *star* of a simplex $\tau \in \mathcal{T}$, denoted by star (τ) , is the union of all *n*-simplices $T \in \Delta$ containing τ , i.e.,

$$\operatorname{star}(\tau) = \bigcup_{\substack{T \in \varDelta \\ \tau \subset T}} T.$$

In particular, star(T) = T for each $T \in \Delta$.

Furthermore, given $\tau \in \mathscr{T}_{\ell}$, $\ell \leq n-1$, we denote by (τ) the linear manifold in \mathbb{R}^n parallel to the affine span aff (τ) of τ and by $(\tau)^{\perp}$ the orthogonal complement of (τ) in \mathbb{R}^n . Note that dim $(\tau)^{\perp} = n - \ell$. In particular, $(v)^{\perp} = \mathbb{R}^n$ for all $v \in \mathscr{V}$.

Let $\tau = \langle v_0, ..., v_\ell \rangle \in \mathscr{T}_\ell$, $\ell \leq n-1$, and let $w \in \mathscr{V}$ be such that $\tau' = \langle \tau, w \rangle := \langle v_0, ..., v_\ell, w \rangle$ is in $\mathscr{T}_{\ell+1}$. Since dim $(\tau)^{\perp} = n - \ell$ and dim $(\tau') = \ell + 1$, the linear manifold $(\tau)^{\perp} \cap (\tau')$ has dimension 1. Moreover, since

aff(τ) has codimension 1 as an affine subspace of aff(τ'), it defines two half-spaces of aff(τ'), and there is a unique unit vector in (τ)^{\perp} \cap (τ') pointing into the half-space of aff(τ') containing w. We denote this unit vector by

 $\sigma_{\tau, w}$.

If v is a vertex in \mathscr{V} , then $\sigma_{v,w}$ is obviously the unit vector in the direction of the edge $\langle v, w \rangle$. If $w_1, ..., w_m \in \mathscr{V}$ and $\tilde{\tau} = \langle \tau, w_1, ..., w_m \rangle$ is in $\mathscr{T}_{\ell+m}$, $\ell + m \leq n$, then we set

$$\sigma(\tau,\,\tilde{\tau}) := (\sigma_{\tau,\,w_1},\,...,\,\sigma_{\tau,\,w_m}).$$

2.3. Nodal Functionals

Given $\sigma = (\sigma_1, ..., \sigma_m)$ a linearly independent sequence of *unit* vectors in \mathbb{R}^n , and $\alpha = (\alpha_1, ..., \alpha_m) \in \mathbb{Z}_+^m$, let D_{σ}^{α} denote the partial derivative

$$D^{\alpha}_{\sigma} := D^{\alpha_1}_{\sigma_1} \cdots D^{\alpha_m}_{\sigma_m},$$

where D_{σ_i} is the derivative in the direction σ_i ,

$$D_{\sigma_i} f(x) := \lim_{t \to +0} t^{-1} \{ f(x + \sigma_i t) - f(x) \},\$$

for a differentiable f. By a nodal functional we mean any linear functional on $\mathscr{S}_{d}^{r}(\Delta)$ of the form $\eta = \delta_{x} D_{\sigma}^{\alpha}$, where x is a point in Ω , and δ_{x} is the point-evaluation functional,

$$\delta_x f := f(x).$$

We denote by

$$q(\eta) = |\alpha| := \sum_{i=1}^{m} \alpha_i \leqslant r$$
(2.5)

the order of η . Given $s \in \mathscr{G}_d^r(\Delta)$, the partial derivative $D_{\sigma}^s s$ is continuous everywhere in Ω if $|\alpha| \leq r$, and piecewise continuous if $|\alpha| > r$. In this last case we have to choose an *n*-simplex $T \in \Delta$, with $x \in T$, and apply our functional to $s|_T$. The following situation is of special interest since, for it, a *natural* choice for *T* exists. Assume that for some $\tau \in \mathscr{T}$ we have $x \in \tau$ and $x + \varepsilon \sigma_i \in \tau$, i = 1, ..., m, if $\varepsilon > 0$ is small enough. Then $\delta_x D_{\sigma}^x s|_T$ is the same for all $T \in \Delta$ such that $\tau \subset T$. We will choose *T* in this way whenever the above situation occurs.

We will often use the following simple lemma.

LEMMA 2.6. Let *L* be a linear manifold in \mathbb{R}^n , dim $L = m \leq n$, and let $\sigma = (\sigma_1, ..., \sigma_m)$ be a basis of *L*, where $\sigma_1, ..., \sigma_m \in L$ are unit vectors. Suppose that all components of $\tilde{\sigma} = (\tilde{\sigma}_1, ..., \tilde{\sigma}_m)$ are also some unit vectors in *L*. Then for any $\alpha \in \mathbb{Z}^m$ there exist real coefficients c_β such that

$$D^{\alpha}_{\tilde{\sigma}} = \sum_{\substack{\beta \in \mathbb{Z}^m \\ |\beta| = |\alpha|}} c_{\beta} D^{\beta}_{\sigma}.$$

Proof. Since σ is a basis for L, there are real coefficients a_{ii} such that

$$\tilde{\sigma}_i = \sum_{j=1}^m a_{ij} \sigma_j \qquad i = 1, ..., m.$$

Therefore,

$$D_{\tilde{\sigma}_i} = \sum_{j=1}^m a_{ij} D_{\sigma_j} \qquad i = 1, ..., m,$$

and

$$D^{\alpha}_{\tilde{\sigma}} = \left(\sum_{j=1}^{m} a_{1j} D_{\sigma_j}\right)^{\alpha_1} \cdots \left(\sum_{j=1}^{m} a_{mj} D_{\sigma_j}\right)^{\alpha_m},$$

where $\alpha = (\alpha_1, ..., \alpha_m)$.

2.4. Polynomial Unisolvent Sets

Let τ be a non-degenerate ℓ -simplex in \mathbb{R}^n . We set

$$\Pi_m^{\ell}(\tau) := \{ p |_{\tau} : p \in \Pi_m^n \}, \qquad m = -1, \, 0, \, 1, \, 2, \, \dots,$$

where Π_m^n is the space of all *n*-variate polynomials of total degree at most m, m = 0, 1, 2, ..., and $\Pi_{-1}^n := \{0\}$. By a change of variables, the elements of $\Pi_m^{\ell}(\tau)$ may be considered as ℓ -variate polynomials of total degree at most m defined on τ . In particular, dim $\Pi_m^{\ell}(\tau) = \dim \Pi_m^{\ell} = (\ell_m^{+m}), m = 0, 1, 2, ..., \dim \Pi_{-1}^{\ell}(\tau) = 0$. A finite set $\Xi \subset \tau$ is said to be Π_m^{ℓ} -unisolvent if for any real $a_{\xi}, \xi \in \Xi$, there exists a unique $p \in \Pi_m^{\ell}(\tau)$ such that $p(\xi) = a_{\xi}$ for all $\xi \in \Xi$. Obviously, the number of elements in any Π_m^{ℓ} -unisolvent set is equal to the dimension of Π_m^{ℓ} .

As a well known example of a Π_m^{ℓ} -unisolvent set we mention the set of $\binom{\ell+m}{\ell}$ uniformly distributed points in the ℓ -simplex $\tau = \langle v_0, ..., v_{\ell} \rangle$,

$$\widetilde{\Xi}_m(\tau) := \left\{ \zeta : \zeta = \frac{u_0 v_0 + \dots + u_\ell v_\ell}{m}, \text{ where } i_0 + \dots + i_\ell = m \right\}.$$
(2.6)

Moreover, its subsets

$$\widetilde{\Xi}_{m}^{k}(\tau) := \{ \xi \in \widetilde{\Xi}_{m}(\tau) : i_{j} > k, \ j = 0, \dots, \ell \}, \qquad 0 \leqslant k \leqslant \frac{m - \ell}{\ell + 1}, \qquad (2.7)$$

are examples of $\Pi_{m-(k+1)(\ell+1)}^{\ell}$ -unisolvent sets in the *interior* of τ . The following technical lemma will be very useful later.

- LEMMA 2.7. Let $p \leq \prod_{m=\ell}^{\ell}(\tau)$ and $0 \leq k \leq \frac{m-\ell}{\ell+1}$. Suppose that
 - (1) for each facet τ' of τ ,

$$\delta_x D_{\sigma(\tau',\tau)}^{k'} p = 0, \qquad all \quad x \in \tau', \qquad k' = 0, \dots, k,$$

(2) for some $\Pi_{m-(k+1)(\ell+1)}^{\ell}$ -unisolvent set Ξ in the interior of τ ,

$$\delta_{\varepsilon} p = 0, \qquad all \quad \xi \in \Xi.$$

Then p = 0.

Proof. Let $\tau_1, ..., \tau_{\ell+1}$ be all facets of τ . For each τ_i , let p_i be a linear *n*-variate polynomial such that $p_i|_{\tau_i} = 0$ and $p_i|_{\tau} \neq 0$. It follows from (1) that

$$p = \tilde{p} \prod_{i=1}^{\ell+1} (p_i|_{\tau})^{k+1},$$

where \tilde{p} is a polynomial in $\prod_{m-(k+1)(\ell+1)}^{\ell}(\tau)$. Since p_i , $i = 1, ..., \ell + 1$, do not vanish in the interior of τ , (2) implies that $\tilde{p}(\xi) = 0$ for all $\xi \in \Xi$. Therefore, $\tilde{p} = 0$, and hence p = 0.

3. A NODAL DETERMINING SET FOR $\mathscr{G}_{d}^{r}(\varDelta)$

Suppose $r \ge 1$ and $d \ge r2^n + 1$. We now associate with each $\tau \in \mathcal{T}$ a set \mathcal{N}_{τ} of nodal functionals on $\mathcal{S}_d^r(\Delta)$. First, let v be a vertex in $\mathcal{V} = \mathcal{T}_0$. For each *n*-simplex $T \in \Delta$ containing v we define

$$\mathcal{N}_{v,q}(T) := \{ \delta_v D^{\alpha}_{\sigma(v,T)} : \alpha \in \mathbb{Z}^n_+, \, |\alpha| = q \}, \qquad 0 \le q \le r 2^{n-1},$$
$$\mathcal{N}_v(T) := \bigcup_{q=0}^{r 2^{n-1}} \mathcal{N}_{v,q}(T).$$

Moreover, we set

$$\mathcal{N}_{v,q} := \bigcup_{\substack{T \in \mathcal{A} \\ v \in T}} \mathcal{N}_{v,q}(T), \qquad \mathcal{N}_{v} := \bigcup_{\substack{q=0 \\ q=0}}^{r2^{n-1}} \mathcal{N}_{v,q} = \bigcup_{\substack{T \in \mathcal{A} \\ v \in T}} \mathcal{N}_{v}(T)$$

Suppose now $\tau \in \mathscr{T}_{\ell}$ for some $\ell \in \{1, ..., n-1\}$. For each $0 \le q \le r2^{n-\ell-1}$, let $\Xi_{\tau,q}$ be a $\Pi^{\ell}_{\mu_{\ell,q}}$ -unisolvent set in the *interior* of τ , where

$$\mu_{\ell, q} := d - q - (r2^{n-\ell} - q + 1)(\ell + 1).$$
(3.1)

275

Given any *n*-simplex $T \in \Delta$ containing τ , we define for each $\xi \in \Xi_{\tau,q}$,

$$\mathcal{N}_{\tau, q, \xi}(T) := \{ \delta_{\xi} D^{\alpha}_{\sigma(\tau, T)} : \alpha \in \mathbb{Z}^{n-\ell}_{+}, \, |\alpha| = q \}.$$

Moreover, we set

$$\mathcal{N}_{\tau}(T) := \bigcup_{q=0}^{r2^{n-\ell-1}} \bigcup_{\xi \in \Xi_{\tau,q}} \mathcal{N}_{\tau,q,\xi}(T), \qquad \mathcal{N}_{\tau,q,\xi} := \bigcup_{\substack{T \in \mathcal{A} \\ \tau \subset T}} \mathcal{N}_{\tau,q,\xi}(T),$$
$$\mathcal{N}_{\tau,q} := \bigcup_{\xi \in \Xi_{\tau,q}} \mathcal{N}_{\tau,q,\xi}, \qquad \mathcal{N}_{\tau} := \bigcup_{q=0}^{r2^{n-\ell-1}} \mathcal{N}_{\tau,q} = \bigcup_{\substack{T \in \mathcal{A} \\ \tau \subset T}} \mathcal{N}_{\tau}(T).$$

Finally, for each $T \in \Delta = \mathcal{T}_n$ we define

$$\mathcal{N}_T := \{\delta_{\xi} : \xi \in \Xi_T\},\$$

where Ξ_T is a $\prod_{d-(r+1)(n+1)}^n$ -unisolvent set in the interior of T.

Note that in general the sets $\mathcal{N}_{\tau, q, \xi}(T)$ are not mutually disjoint for different T containing τ . For example, let $\tau = \langle v_0, ..., v_{n-2} \rangle \in \mathcal{T}_{n-2}$, and suppose that both $T = \langle \tau, u, w \rangle$ and $\tilde{T} = \langle \tau, u, \tilde{w} \rangle$ are in Δ . Then the nodal functional $\delta_{\xi} D^{r+1}_{\sigma_{\tau,u}}$ belongs to $\mathcal{N}_{\tau, r+1, \xi}(T) \cap \mathcal{N}_{\tau, r+1, \xi}(\tilde{T})$. On the other hand, if an *n*-simplex $T \in \Delta$ is fixed, then the sets $\mathcal{N}_{\tau, q, \xi}(T)$ are mutually disjoint for all τ, q, ξ .

THEOREM 3.1. The set

$$\mathscr{N} := \bigcup_{\tau \in \mathscr{T}} \mathscr{N}_{\tau}$$

is a determining set for $\mathscr{G}^{r}_{d}(\varDelta)$.

Proof. Let $s \in \mathcal{G}_d^r(\Delta)$ satisfy $\eta s = 0$ for all $\eta \in \mathcal{N}$. We have to show that s = 0. To this end we choose an arbitrary $T \in \Delta$ and show that $s|_T = 0$. For each vertex v of T, the set

$$\mathcal{N}_{v}(T) = \left\{ \delta_{v} D^{\alpha}_{\sigma(v, T)} : \alpha \in \mathbb{Z}^{n}_{+}, \, |\alpha| \leq r 2^{n-1} \right\}$$

is included in \mathcal{N} . Since $\sigma(v, T)$ is a basis of \mathbb{R}^n , we have by Lemma 2.6,

$$\delta_v D^{\alpha}_{\sigma} s|_T = 0, \quad \text{all} \quad \alpha \in \mathbb{Z}^n_+, \quad |\alpha| \leq r 2^{n-1},$$

for any sequence σ of unit vectors.

For $\ell = 0, ..., n-1$, we now show by induction that for each ℓ -face τ of T, if the components of σ are some unit vectors in $(\tau)^{\perp}$, then

$$\delta_x D^{\alpha}_{\sigma} s|_T = 0, \quad \text{all} \quad x \in \tau, \, \alpha \in \mathbb{Z}^{n-\ell}_+, \quad |\alpha| \leq r 2^{n-\ell-1}. \quad (3.2)$$

The validity of (3.2) for $\ell = 0$ is shown above. Suppose $1 \leq \ell \leq n-1$. Let $\alpha \in \mathbb{Z}_{+}^{n-\ell}$, $|\alpha| = q$, with $1 \leq q \leq r2^{n-\ell-1}$. In view of Lemma 2.6, it suffices to prove (3.2) for $\sigma = \sigma(\tau, T)$. We have $p := D_{\sigma(\tau, T)}^{\alpha} s|_{T} \in \Pi_{d-q}^{n}$ and $p|_{\tau} \in \Pi_{d-q}^{\ell}(\tau)$. By the induction hypothesis, for each facet τ' of τ ,

$$\delta_x D_{\sigma(\tau',\tau)}^{q'} p|_{\tau} = 0,$$
 all $x \in \tau', q' = 0, ..., r 2^{n-\ell} - q.$

Since the nodal functionals $\delta_{\xi} D^{\alpha}_{\sigma(\tau, T)}$, $\xi \in \Xi_{\tau, q}$, are included in $\mathcal{N}_{\tau}(T) \subset \mathcal{N}$, we have in addition

$$\delta_{\xi} p|_{\tau} = 0, \quad \text{all} \quad \xi \in \Xi_{\tau, q}.$$

Since $\Xi_{\tau,q}$ is $\Pi_{\mu_{\ell,q}}^{\ell}$ -unisolvent, Lemma 2.7 implies that $p|_{\tau} = 0$, which confirms (3.2).

In particular, (3.2) holds for each facet F of T, i.e.,

$$\delta_s D^q_{\sigma(F,T)} s|_T = 0$$
, all $x \in F$, $q = 0, ..., r$.

Since \mathcal{N}_{T} is included in \mathcal{N} , we have in addition

$$\delta_{\xi} s|_T = 0, \quad \text{all} \quad \xi \in \Xi_T.$$

Since Ξ_T is $\prod_{d-(r+1)(n+1)}^n$ -unisolvent, Lemma 2.7 implies that $s|_T = 0$, which completes the proof.

THEOREM 3.2. For each $T \in \Delta$, let

$$\mathcal{N}(T) := \mathcal{N}_T \cup \bigcup_{\ell=0}^{n-1} \bigcup_{\tau \in \mathcal{T}_\ell(T)} \mathcal{N}_\tau(T),$$

where $\mathcal{T}_{\ell}(T)$ denotes the set of all ℓ -faces of T. Then $\mathcal{N}(T)$ is a minimal determining set for Π_d^n .

Proof. It is easy to see that the set of nodal functionals $\mathcal{N}(T)$ is the same, whatever the triangulation Δ containing T may be. If we take $\Delta = \{T\}$, then obviously $\mathcal{P}_d^r(\Delta) = \prod_d^n$ and $\mathcal{N} = \mathcal{N}(T)$. Therefore, $\mathcal{N}(T)$ is a determining set for \prod_d^n by Theorem 3.1. It thus remains to show that $\# \mathcal{N}(T) = \dim \prod_d^n = \binom{n+d}{n}$. We have

$$\#\mathcal{N}(T) = \#\mathcal{N}_T + \sum_{v \in \mathcal{T}_0(T)} \#\mathcal{N}_v(T) + \sum_{\ell=1}^{n-1} \sum_{\tau \in \mathcal{T}_\ell(T)} \#\mathcal{N}_\tau(T).$$

It is easy to see that

$$\begin{split} \# \, \mathcal{N}_T &= \binom{n+d-(r+1)(n+1)}{n}, \\ \# \, \mathcal{N}_v(T) &= \sum_{q=0}^{r2^{n-1}} \binom{n-1+q}{n-1} = \binom{n+r2^{n-1}}{n}, \qquad v \in \mathcal{T}_0(T), \\ \# \, \mathcal{N}_\tau(T) &= \sum_{q=0}^{r2^{n-\ell-1}} \binom{\ell+\mu_{\ell,q}}{\ell} \binom{n-\ell-1+q}{n-\ell-1}, \\ &\quad \tau \in \mathcal{T}_\ell(T), \qquad 1 \leqslant \ell \leqslant n-1, \end{split}$$

where $\mu_{\ell,q}$ is defined in (3.1).

We now consider the set

$$Z := \left\{ \alpha \in \mathbb{Z}_{+}^{n+1} : |\alpha| = d \right\}.$$

Obviously, $\#Z = \binom{n+d}{n}$. Therefore, the theorem will be established if we show that

$$\#Z = \#\mathcal{N}(T). \tag{3.3}$$

For any nonempty subset I of $\{1, ..., n+1\}$, let

$$\begin{split} Z_I &:= \bigg\{ \alpha \in Z : \sum_{i \in I} \alpha_i \geqslant d - r 2^{n-\ell-1} \bigg\}, \quad \text{ if } \quad \ell := \#I - 1 < n, \\ Z_{\{1, \dots, n+1\}} &:= Z, \end{split}$$

and

$$\begin{split} \widetilde{Z}_{\{i\}} &:= Z_{\{i\}}, \qquad \qquad i = 1, \dots, n+1, \\ \widetilde{Z}_I &:= Z_I \bigvee_{i \in I} Z_{I \setminus \{i\}}, \qquad \# I \geqslant 2. \end{split}$$

Taking into account the assumption $d \ge r2^n + 1$, it is not difficult to see that Z is a disjoint union of the sets \tilde{Z}_I . Hence,

$$\# Z = \sum_{\ell=0}^{n} \sum_{\#I=\ell+1} \# \tilde{Z}_{I}.$$

We have

$$\begin{split} \tilde{Z}_{\{1, \dots, n+1\}} &= \left\{ \alpha \in Z : \sum_{\substack{i=1\\i \neq j}}^{n+1} \alpha_i < d-r, \, j=1, \dots, n+1 \right\} \\ &= \left\{ \alpha \in \mathbb{Z}_+^{n+1} : |\alpha| = d, \, \alpha_j \geqslant r+1, \, j=1, \dots, n+1 \right\}, \end{split}$$

and it follows that

$$\#\widetilde{Z}_{\{1,\ldots,n+1\}} = \binom{n+d-(r+1)(n+1)}{n} = \#\mathcal{N}_T.$$

Furthermore, for each i = 1, ..., n + 1, we have

$$\tilde{Z}_{\{i\}} = \{ \alpha \in \mathbb{Z}_{+}^{n+1} : |\alpha| = d, \ \alpha_i \ge d - r2^{n-1} \},$$

so that $\#\widetilde{Z}_{\{i\}} = \binom{n+r2^{n-1}}{n}$, and hence

$$\sum_{i=1}^{n+1} \# \tilde{Z}_{\{i\}} = (n+1) \binom{n+r2^{n-1}}{n} = \sum_{v \in \mathscr{T}_0(T)} \# \mathscr{N}_v(T).$$

Let now $I \subset \{1, ..., n+1\}, \ell := \#I - 1 < n$. Then

$$\begin{split} \widetilde{Z}_I &= \bigg\{ \alpha \in Z : \sum_{i \in I} \alpha_i \geqslant d - r 2^{n-\ell-1}, \sum_{i \in I \setminus \{j\}} \alpha_i < d - r 2^{n-\ell}, \ j \in I \bigg\} \\ &= \bigcup_{q=0}^{r 2^{n-\ell-1}} \bigg\{ \alpha \in Z : \sum_{i \in I} \alpha_i = d - q, \ \alpha_j \geqslant r 2^{n-\ell} - q + 1, \ j \in I \bigg\}. \end{split}$$

A standard combinatorial argument shows that the cardinality of the set

$$\left\{ \alpha \in Z : \sum_{i \in I} \alpha_i = d - q, \; \alpha_j \ge r 2^{n-\ell} - q + 1, \; j \in I \right\}$$

is $\binom{\ell+\mu_{\ell,q}}{\ell}\binom{n-\ell-1+q}{n-\ell-1}$. Since the number of subsets *I* of $\{1, ..., n+1\}$ consisting of $\ell+1$ elements is equal to $\binom{n+1}{\ell+1} = \# \mathscr{T}_{\ell}(T)$, we conclude that

$$\sum_{\#I=\ell+1} \# \widetilde{Z}_I = \sum_{\tau \in \mathscr{T}_{\ell}(T)} \# \mathscr{N}_{\tau}(T), \qquad \ell = 1, ..., n-1.$$

Thus, (3.3) holds, and the proof is complete.

Theorem 3.2 shows that the set $\mathcal{N}(T)$ defines a *Hermite interpolation* operator $\mathscr{H}_T: C^{r2^{n-1}}(T) \to \Pi^n_d$ as follows. Given $f \in C^{r2^{n-1}}(T)$, let $\mathscr{H}_T f$ be the unique polynomial in Π^n_d satisfying

$$\eta \mathscr{H}_T f = \eta f, \quad \text{all} \quad \eta \in \mathscr{N}(T).$$
 (3.4)

Obviously, this is a standard finite-element interpolation scheme, see e.g. [24, 30].

The following estimation of the norm of $\mathscr{H}_T f$ in the case of uniformly distributed points easily follows from the general results given in [13]; see also the proof of Lemma 3.9 in [16].

LEMMA 3.3. Choose

$$\begin{aligned} \Xi_{\tau, q} &= \tilde{\Xi}_{d-q}^{2^{n-\ell}-q}, \qquad all \quad \tau \in \mathcal{T}_{\ell}, \ 1 \leq \ell \leq n-1, \ 0 \leq q \leq r 2^{n-\ell-1}, \\ \Xi_T &= \tilde{\Xi}_d^r, \qquad all \quad T \in \mathcal{T}_n, \end{aligned}$$
(3.5)

where $\tilde{\Xi}_m^k$ are defined in (2.7). Then

$$\|\mathscr{H}_T f\|_{L_{\infty}(T)} \leq K \max_{\eta \in \mathscr{N}(T)} h_T^{q(\eta)} |\eta f|,$$
(3.6)

where h_T is the diameter of T, $q(\eta)$ is the order of the nodal functional η , and K is a constant depending only on n, r and d.

4. SMOOTHNESS CONDITIONS

As shown in the previous section, $\mathcal{N} \subset \mathscr{G}^r_d(\Delta)^*$ is a determining set for $\mathscr{G}^r_d(\Delta)$. Therefore, \mathcal{N} is a spanning set for $\mathscr{G}^r_d(\Delta)^*$. However, as we will see, there are some linear dependencies between the elements of \mathcal{N} , called *nodal smoothness conditions*. Our next task is to describe these conditions.

Let $\tau \in \mathscr{T}_{\ell}$ for some $0 \leq \ell \leq n-1$, and let $F = \langle \tau, u_1, ..., u_{n-\ell-1} \rangle \in \mathscr{T}_{n-1}$ be an *interior* facet of \varDelta attached to τ . Then there are exactly two *n*-simplices $T_1, T_2 \in \varDelta$ sharing the facet *F*. Let $T_1 = \langle F, u_{n-\ell} \rangle$, $T_2 = \langle F, w \rangle$. Since the components of

$$\sigma(\tau, T_1) = (\sigma_{\tau, u_1}, ..., \sigma_{\tau, u_{n-\ell}})$$

form a basis for $(\tau)^{\perp}$, and since $\sigma_{\tau, w}$ also lies in $(\tau)^{\perp}$, there exists $\mu \in \mathbb{R}^{n-\ell}$, $\mu = (\mu_1, ..., \mu_{n-\ell})$, such that

$$\sigma_{\tau,w} = \sum_{i=1}^{n-\ell} \mu_i \sigma_{\tau,u_i}.$$

LEMMA 4.1. If $s \in \mathcal{G}_d^r(\Delta)$, then for all $\xi \in \tau$, $\alpha \in \mathbb{Z}_+^{n-\ell-1}$ and $0 \leq r' \leq r$,

$$\delta_{\xi} D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}} s = \sum_{\substack{\beta \in \mathbb{Z}^{n-\ell}_{+} \\ |\beta| = r'}} {\binom{|\beta|}{\beta}} \mu^{\beta} \, \delta_{\xi} \, D^{\alpha}_{\sigma(\tau, F)} \, D^{\beta}_{\sigma(\tau, T_{1})} s, \tag{4.1}$$

where $\binom{|\beta|}{\beta} := |\beta|!/\beta_1! \cdots \beta_{n-\ell}!, \ \mu^{\beta} := \mu_1^{\beta_1} \cdots \mu_{n-\ell}^{\beta_{n-\ell}}.$

Proof. Let $p_1 := s|_{T_1}, p_2 := s|_{T_2}$ and $\sigma_i := \sigma_{\tau, u_i}, i = 1, ..., n - \ell$. We have

$$\begin{split} \delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} D^{r'}_{\sigma_{\tau,w}} p_1 &= \delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} \left(\sum_{i=1}^{n-\ell} \mu_i D_{\sigma_i} \right)^{r'} p_1 \\ &= \delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} \left(\sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} D^{\beta_1}_{\sigma_1} \cdots D^{\beta_{n-\ell}}_{\sigma_{n-\ell}} \right) p_1 \\ &= \sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} \delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} D^{\beta}_{\sigma(\tau,T_1)} p_1. \end{split}$$

Since $s \in C^r(T_1 \cup T_2)$ and $r' \leq r$,

$$D_{\sigma_{\tau,w}}^{r'}p_1(x) = D_{\sigma_{\tau,w}}^{r'}p_2(x), \quad \text{all} \quad x \in F = T_1 \cap T_2.$$

Therefore,

$$\delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} D^{r'}_{\sigma_{\tau,w}} p_1 = \delta_{\xi} D^{\alpha}_{\sigma(\tau,F)} D^{r'}_{\sigma_{\tau,w}} p_2,$$

for all $\xi \in F$, in particular for $\xi \in \tau$. Thus,

$$\delta_{\xi} D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}} p_2 = \sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} {\beta \choose \beta} \mu^{\beta} \delta_{\xi} D^{\alpha}_{\sigma(\tau, F)} D^{\beta}_{\sigma(\tau, T_1)} p_1.$$
(4.2)

Finally, we note that

$$D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}} = D^{\gamma}_{\sigma(\tau, T_2)}, \qquad D^{\alpha}_{\sigma(\tau, F)} D^{\beta}_{\sigma(\tau, T_1)} = D^{\tilde{\gamma}}_{\sigma(\tau, T_1)}, \tag{4.3}$$

where $\gamma = (\alpha_1, ..., \alpha_{n-\ell-1}, r'), \tilde{\gamma} = (\alpha_1 + \beta_1, ..., \alpha_{n-\ell-1} + \beta_{n-\ell-1}, \beta_{n-\ell})$, and the observation that by definition

$$\delta_{\xi} D^{\gamma}_{\sigma(\tau, T_2)} s = \delta_{\xi} D^{\gamma}_{\sigma(\tau, T_2)} p_2, \qquad \delta_{\xi} D^{\tilde{\gamma}}_{\sigma(\tau, T_1)} s = \delta_{\xi} D^{\tilde{\gamma}}_{\sigma(\tau, T_1)} p_1$$

(see Section 2.3) completes the proof.

Remark 4.2. Lemma 4.1 shows that the condition (4.2) holds for all $\xi \in \tau$, $\alpha \in \mathbb{Z}_{+}^{n-\ell}$ and $0 \leq r' \leq r$ if the two polynomials p_1 and p_2 defined on T_1 and T_2 , respectively, join together with C^r -smoothness across $F = T_1 \cap T_2$. It is not difficult to see that the converse is also true. Note that for $\tau \in \mathcal{T}_0$, Lemma 4.1 as well as its converse were given (in a slightly different form) in Theorem 4.1.2 of [11], and (in the bivariate case) in [16].

We now concentrate on the conditions (4.1) that involve the nodal functionals in the set \mathcal{N} defined in Section 3. Namely, Lemma 4.1 implies that the following linear relations between the elements of \mathcal{N} hold:

(1) given $v \in \mathcal{T}_0$ and $0 \leq q \leq r 2^{n-1}$, the system $\mathcal{R}_{v,q}$ of linear conditions

$$\delta_{v} D^{\alpha}_{\sigma(v,F)} D^{r'}_{\sigma_{v,w}} = \sum_{\substack{\beta \in \mathbb{Z}^{n}_{+} \\ |\beta| = r'}} {|\beta| \choose \beta} \mu^{\beta} \, \delta_{v} \, D^{\alpha}_{\sigma(v,F)} \, D^{\beta}_{\sigma(v,T_{1})}, \tag{4.4}$$

for all $0 \le r' \le \min\{r, q\}$, all $\alpha \in \mathbb{Z}_+^{n-1}$, with $|\alpha| = q - r'$, and all interior facets $F \in \mathcal{T}_{n-1}$ such that $v \in F$,

(2) given $\tau \in \mathcal{T}_{\ell}$ (where $1 \leq \ell \leq n-2$), $0 \leq q \leq r2^{n-\ell-1}$, and $\xi \in \Xi_{\tau,q}$, the system $\mathcal{R}_{\tau,q,\xi}$ of linear conditions

$$\delta_{\xi} D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}} = \sum_{\substack{\beta \in \mathbb{Z}^{n-\ell}_{+} \\ |\beta| = r'}} {\binom{|\beta|}{\beta}} \mu^{\beta} \, \delta_{\xi} \, D^{\alpha}_{\sigma(\tau, F)} \, D^{\beta}_{\sigma(\tau, T_{1})}, \tag{4.5}$$

for all $0 \le r' \le \min\{r, q\}$, all $\alpha \in \mathbb{Z}_+^{n-\ell-1}$, with $|\alpha| = q - r'$, and all interior facets $F \in \mathcal{T}_{n-1}$ such that $\tau \subset F$, and

(3) given an interior facet $F \in \mathcal{T}_{n-1}$, $0 \leq q \leq r$, and $\xi \in \Xi_{F,q}$, the linear condition $\mathcal{R}_{F,q,\xi}$,

$$\delta_{\xi} D^{q}_{\sigma_{F,w}} = (-1)^{q} \, \delta_{\xi} D^{q}_{\sigma(F, T_{1})}. \tag{4.6}$$

(Here and above w, T_1 and μ_i correspond to a particular F and are defined as in Lemma 4.1.)

OLEG DAVYDOV

Remark 4.3. In view of (4.3) it is easy to see that the smoothness conditions in $\mathcal{R}_{v,q}$, $\mathcal{R}_{\tau,q,\xi}$ or $\mathcal{R}_{F,q,\xi}$ involve only the nodal functionals in $\mathcal{N}_{v,q}$, $\mathcal{N}_{\tau,q,\xi}$ or $\mathcal{N}_{F,q,\xi}$, respectively. (See the definition of the sets of nodal functionals $\mathcal{N}_{v,q}$ and $\mathcal{N}_{\tau,q,\xi}$ in Section 3.)

Let

$$\begin{aligned} \mathcal{R}_{v} &:= \bigcup_{q=0}^{r2^{n-1}} \mathcal{R}_{v,q}, \qquad v \in \mathcal{T}_{0}, \\ \mathcal{R}_{\tau} &:= \bigcup_{q=0}^{r2^{n-\ell-1}} \mathcal{R}_{\tau,q} \qquad \mathcal{R}_{\tau,q} := \bigcup_{\xi \in \mathcal{Z}_{\tau,q}} \mathcal{R}_{\tau,q,\xi}, \qquad \tau \in \mathcal{T}_{\ell}, \qquad 1 \leqslant \ell \leqslant n-1. \end{aligned}$$

$$(4.7)$$

THEOREM 4.4. The set

$$\mathscr{R} := \bigcup_{\tau \in \mathscr{T} \setminus \mathscr{F}_n} \mathscr{R}_{\tau} \tag{4.8}$$

is a complete system of linear relations for \mathcal{N} over $\mathscr{G}^{r}_{d}(\varDelta)$.

Proof. By Theorem 3.1, \mathcal{N} is a determining set for $\mathscr{G}_d^r(\Delta)$. Suppose the system \mathscr{R} is written as

$$\sum_{j \in J} c_{i, j} \eta_j = 0, \qquad i \in I,$$

where *I*, *J* are some index sets, $\{\eta_j\}_{j \in J} = \mathcal{N}$, and $c_{i,j}$ real coefficients. Let $a_j, j \in J$, be any real numbers satisfying

$$\sum_{j \in J} c_{i, j} a_j = 0, \qquad i \in I.$$

According to Definition 2.2, we have to show that there exists a spline $s \in \mathscr{G}_d^r(\Delta)$ such that $\eta_j s = a_j$ for all $j \in J$. We first construct the polynomial pieces of s, $p_T = s|_T$, $T \in \Delta$, as follows. By Theorem 3.2, $\mathscr{N}(T)$ is a minimal determining set for Π_d^n . We define p_T to be the unique polynomial in Π_d^n such that

$$\eta_i p_T = a_i, \quad \text{all} \quad \eta_i \in \mathcal{N}(T).$$

We thus have to prove that p_T , $T \in \Delta$, join together with C^r -smoothness. To this end it suffices to consider two *n*-simplices T_1 , $T_2 \in \Delta$ sharing a facet $F \in \mathcal{T}_{n-1}$ and show that the two polynomials $p_1 := p_{T_1}$ and $p_2 := p_{T_2}$ join with C^r -smoothness across F. This, in turn, will follow if we show that

$$\delta_x D_{\sigma_{F,w}}^{r'}(p_2 - p_1) = 0, \quad \text{all} \quad x \in F, \quad r' = 0, ..., r.$$
(4.9)

where w is the vertex of T_2 not lying in F. (That is, $T_2 = \langle F, w \rangle$.)

We first prove by induction on ℓ that for each ℓ -face τ of F, $\ell = 0, ..., n-2$, and for all r' = 0, ..., r, and $\alpha \in \mathbb{Z}^{n-\ell-1}$, with $|\alpha| \leq r2^{n-\ell-1} - r'$,

$$\delta_x D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}}(p_2 - p_1) = 0, \quad \text{all} \quad x \in \tau.$$

$$(4.10)$$

Let $\ell = 0$, and let v be a vertex of F. Given r' = 0, ..., r and $\alpha \in \mathbb{Z}^{n-1}$, with $|\alpha| \leq r2^{n-1} - r'$, the functional $\eta_{j_0} := \delta_v D^{\alpha}_{\sigma(v, F)} D^{r'}_{\sigma_{v, w}}$ is in $\mathcal{N}(T_2)$. Hence, $\eta_{j_0}p_2 = a_{j_0}$. Let us compute $\eta_{j_0}p_1$. We set $\eta_{j_\beta} := \delta_v D^{\alpha}_{\sigma(v, F)} D^{\beta}_{\sigma(v, T_1)} \in \mathcal{N}(T_1)$, $|\beta| = r'$. By (4.4), the equation

$$\eta_{j_0} - \sum_{\substack{\beta \in \mathbb{Z}_+^n \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} = 0$$

belongs to \mathcal{R} . Therefore,

$$a_{j_0} - \sum_{\substack{\beta \in \mathbb{Z}_+^n \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}} = 0.$$

On the other hand, since $\eta_{j_{\beta}} \in \mathcal{N}(T_1)$, we have $\eta_{j_{\beta}}p_1 = a_{j_{\beta}}$, and it follows that

$$\eta_{j_0} p_1 = \sum_{\substack{\beta \in \mathbb{Z}_+^n \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} p_1 = \sum_{\substack{\beta \in \mathbb{Z}_+^n \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}} = a_{j_0}.$$

Thus, $\eta_{i_0}(p_2 - p_1) = 0$, which confirms (4.10) for $\ell = 0$.

Suppose $1 \le \ell \le n-2$, and let τ be and ℓ -face of F. Given r' = 0, ..., r and $\alpha \in \mathbb{Z}^{n-\ell-1}$, with $|\alpha| \le r2^{n-\ell-1} - r'$, consider

$$p := D^{\alpha}_{\sigma(\tau, F)} D^{r'}_{\sigma_{\tau, w}}(p_2 - p_1)|_{\tau} \in \Pi^{\ell}_{d-q}(\tau),$$

where $q := |\alpha| + r'$. Let us show that for each facet τ' of τ ,

$$\delta_x D^{q'}_{\sigma(\tau',\tau)} p = 0,$$
 all $x \in \tau', q' = 0, ..., r 2^{n-\ell} - q.$ (4.11)

Since the components of $\sigma(\tau', \tau)$ and $\sigma(\tau, F)$ form a basis for $(\tau')^{\perp} \cap (F)$, we have by Lemma 2.6, that

$$D_{\sigma(\tau',\tau)}^{q'} D_{\sigma(\tau,F)}^{\alpha} = \sum_{\substack{\gamma \in \mathbb{Z}^{n-\ell} \\ |\gamma| = |\alpha| + q'}} c_{\gamma} D_{\sigma(\tau',F)}^{\gamma}.$$

Moreover, since $\sigma_{\tau, w} \in (\tau)^{\perp} \subset (\tau')^{\perp}$,

$$D_{\sigma_{\tau,w}}^{r'} = \sum_{\tilde{r}=0}^{r'} \sum_{\substack{\gamma \in \mathbb{Z}^{n-\ell} \\ |\gamma|=r'-\tilde{r}}} \tilde{c}_{\gamma,\tilde{r}} D_{\sigma(\tau',F)}^{\gamma} D_{\sigma_{\tau',w}}^{\tilde{r}}.$$

Therefore, we have for $x \in \tau'$,

$$\begin{split} \delta_x D_{\sigma(\tau',\tau)}^{q'} p &= \delta_x D_{\sigma(\tau',\tau)}^{q'} D_{\sigma(\tau,F)}^{\alpha} D_{\sigma_{\tau,w}}^{p'} (p_2 - p_1) \\ &= \sum_{\tilde{r}=0}^{r'} \sum_{\substack{\gamma \in \mathbb{Z}^{n-\ell} \\ |\gamma| \,=\, |\alpha| \,+\, q'}} \sum_{\substack{\tilde{\gamma} \in \mathbb{Z}^{n-\ell} \\ |\tilde{\gamma}| \,=\, r' - \tilde{r}}} c_{\gamma} \tilde{c}_{\tilde{\gamma},\tilde{r}} \, \delta_x \, D_{\sigma(\tau',F)}^{\gamma+\tilde{\gamma}} \, D_{\sigma_{\tau',w}}^{\tilde{r}} (p_2 - p_1). \end{split}$$

By the induction hypothesis, every term in this last sum is zero (since $\tilde{r} \leq r$ and $|\gamma| + |\tilde{\gamma}| + \tilde{r} = |\alpha| + q' + r' = q + q' \leq r 2^{n-\ell}$), and (4.11) follows. We show now that

$$\delta_{\xi} p = 0, \qquad \text{all} \quad \xi \in \Xi_{\tau, q}, \tag{4.12}$$

where $\Xi_{\tau,q}$ is a $\Pi_{\mu_{\ell,q}}^{\ell}$ -unisolvent set in the interior of τ as defined in Section 3. Let $\xi \in \Xi_{\tau,q}$ be given. Similar to the proof in case $\ell = 0$, we set $\eta_{j_0} := \delta_{\xi} D_{\sigma(\tau,F)}^{\alpha} D_{\sigma_{\tau,w}}^{r'} \in \mathcal{N}(T_2), \quad \eta_{j_{\beta}} := \delta_{\xi} D_{\sigma(\tau,f)}^{\alpha} D_{\sigma(\tau,T_1)}^{\alpha} \in \mathcal{N}(T_1), \quad |\beta| = r'.$ By (4.5), the equation

$$\eta_{j_0} - \sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} = 0$$

belongs to \mathcal{R} . Hence, we get

$$\begin{split} \eta_{j_0} p_1 &= \sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} \eta_{j_{\beta}} p_1 = \sum_{\substack{\beta \in \mathbb{Z}_+^{n-\ell} \\ |\beta| = r'}} \binom{|\beta|}{\beta} \mu^{\beta} a_{j_{\beta}} \\ &= a_{j_0} = \eta_{j_0} p_2, \end{split}$$

and (4.12) is proved. In view of (4.11) and (4.12), we conclude by Lemma 2.7 that p = 0, which establishes (4.10).

To prove (4.9) for any given r' = 0, ..., r, we set

$$p := D_{\sigma_{F,w}}^{r'}(p_2 - p_1)|_F \in \Pi_{d-r'}^{n-1}.$$

Analysis similar to the above shows that by (4.10) it follows that for each facet τ of *F*,

$$\delta_x D^q_{\sigma(\tau - F)} p = 0,$$
 all $x \in \tau, q = 0, ..., 2r - r'.$

Furthermore, given $\xi \in \Xi_{F,x'}$, the nodal functionals $\eta_{j_1} := \delta_{\xi} D_{\sigma(F,T_1)}^{r'}$ and $\eta_{j_2} := \delta_{\xi} D_{\sigma_{F,w}}^{r'}$ are in $\mathcal{N}(T_1)$ and $\mathcal{N}(T_2)$, respectively. By (4.6),

$$\delta_{\xi} D_{\sigma_{F,w}}^{r'} = (-1)^{r'} \delta_{\xi} D_{\sigma(F,T_1)}^{r'},$$

and hence

$$\delta_{\xi} p = \eta_{j_2} p_2 - (-1)^{r'} \eta_{j_1} p_1 = a_{j_2} - (-1)^{r'} a_{j_1} = 0.$$

Thus, Lemma 2.7 implies that p = 0, which establishes (4.9) and completes the proof of the theorem.

5. CONSTRUCTION OF A LOCAL BASIS FOR $\mathscr{G}^{r}_{d}(\varDelta)$

Let $d \ge r2^n + 1$. Since \mathscr{N} is a determining set for $\mathscr{S}_d^r(\Delta)$ by Theorem 3.1, and \mathscr{R} is a complete system of linear relations for \mathscr{N} over $\mathscr{S}_d^r(\Delta)$ by Theorem 4.4, Algorithm 2.4 can be applied to construct a basis $\{\tilde{s}_1, ..., \tilde{s}_m\}$ for $\mathscr{S}_d^r(\Delta)$. To this end we only need to choose a basis $\{a^{[1]}, ..., a^{[m]}\}$ for the null space N(C) of the corresponding matrix C. In this section we will show how to choose the basis for N(C) so that the resulting basis for $\mathscr{S}_d^r(\Delta)$ is *local* as defined below.

Let v be a vertex of Δ . We set $\operatorname{star}^1(v) := \operatorname{star}(v)$, and define $\operatorname{star}^{\gamma}(v)$, $\gamma \ge 2$, recursively as the union of the stars of the vertices in $\mathcal{T}_0 \cap \operatorname{star}^{\gamma-1}(v)$.

DEFINITION 5.1. Let \mathscr{S} be a linear subspace of $\mathscr{S}_{d}^{r}(\varDelta)$. A basis $\{s_{1}, ..., s_{m}\}$ for \mathscr{S} is called *local* (or γ -*local*) if there is an integer γ such that for each k = 1, ..., m, supp $s_{k} \subset \operatorname{star}^{\gamma}(v_{k})$, for some vertex v_{k} of \varDelta , and the dual functionals $\lambda_{1}, ..., \lambda_{m}$, defined by (2.1), can be localized in the same sets $\operatorname{star}^{\gamma}(v_{1}), ..., \operatorname{star}^{\gamma}(v_{k})$, i.e., for each $k = 1, ..., m, \lambda_{k} s = 0$ for all $s \in \mathscr{S}$ satisfying $s|_{\operatorname{star}^{\gamma}(v_{k})} = 0$.

We say that an *algorithm produces local bases* if there exists an absolute (integer) constant γ such that any basis constructed by that algorithm is at most γ -local.

The key observation for our construction is that the matrix C of the system \mathscr{R} has a *block diagonal structure*. More precisely, by Remark 4.3 we have

$$C = [\tilde{C} O], \tag{5.1}$$
$$\tilde{C} = \text{diag}(C_{\tau})_{\tau \in \mathscr{F} \setminus \mathscr{F}_{\tau}},$$

where C_{τ} is the matrix of the system \mathscr{R}_{τ} defined in (4.7), and O is the zero matrix corresponding to the nodal functionals in \mathscr{N}_T , $T \in \mathscr{T}_n$, not involved in any smoothness conditions. Moreover, each matrix C_{τ} itself is block diagonal. Namely,

$$C_{\tau} = \operatorname{diag}(C_{\tau, q})_{q=0, \dots, r2^{n-\ell-1}}, \qquad \tau \in \mathcal{T}_{\ell}, \qquad 0 \leq \ell \leq n-1, \qquad (5.2)$$

where $C_{\tau,q}$ is the matrix of the system $\mathscr{R}_{\tau,q}$ defined in (4.4)–(4.7). If $1 \leq \ell \leq n-1$, then the matrix $C_{\tau,q}$ is again block diagonal,

$$C_{\tau,q} = \operatorname{diag}(C_{\tau,q,\xi})_{\xi \in \Xi_{\tau,q}},$$

with $C_{\tau, q, \xi}$ being the matrix of the system $\mathscr{R}_{\tau, q, \xi}$. By Lemma 2.3, we have

$$\dim \mathscr{S}_{d}^{r}(\varDelta) = \# \mathscr{N} - \sum_{\tau \in \mathscr{F} \setminus \mathscr{F}_{n}} \operatorname{rank} C_{\tau}$$

$$= \# \mathscr{N} - \sum_{v \in \mathscr{F}_{0}} \sum_{q=0}^{r2^{n-1}} \operatorname{rank} C_{v,q}$$

$$- \sum_{\ell=1}^{n-1} \sum_{\tau \in \mathscr{F}_{\ell}} \sum_{q=0}^{r2^{n-\ell-1}} \sum_{\xi \in \mathcal{Z}_{\tau,q}} \operatorname{rank} C_{\tau,q,\xi}.$$
(5.3)

Remark 5.2. The formula (5.3) leads to the efficient computation of the dimension of the space $\mathscr{G}_{d}^{r}(\Delta)$ by applying to the *small* matrices $C_{v,q}$ and $C_{\tau,q,\xi}$ the standard numerical algorithms of rank determination (see e.g. [29]).

In view of (5.1) and (5.2), $N(\tilde{C})$ is an (outer) direct sum of $N(C_{\tau,q})$, $q=0, ..., r2^{n-\ell-1}, \tau \in \mathcal{T}_{\ell}, 0 \leq \ell \leq n-1$. Hence, if we know bases for all $N(C_{\tau,q})$, then we can combine them into a basis for $N(\tilde{C})$ that trivially extends to a basis for N(C). Let $\mathcal{N}_{\tau,q} = \{\eta_j^{[\tau,q]}\}_{j \in J_{\tau,q}}$ and $C_{\tau,q} = (c_{i,j}^{[\tau,q]})_{i \in I_{\tau,q}, j \in J_{\tau,q}}$, so that $\mathcal{R}_{\tau,q}$ has the form

$$\sum_{j \in J_{\tau,q}} c_{i,j}^{[\tau,q]} \eta_j^{[\tau,q]} = 0, \qquad i \in I_{\tau,q}.$$

For each $\tau \in \mathcal{T}_{\ell}$, $0 \leq \ell \leq n-1$, and $q = 0, ..., r2^{n-\ell-1}$, suppose

$$a^{[\tau, q, k]} = (a^{[\tau, q, k]}_{j})_{j \in J_{\tau, q}}, \qquad k = 1, ..., m_{\tau, q},$$
(5.4)

form a basis for $N(C_{\tau,q})$. In addition, for each $T \in \mathcal{T}_n$, let $a^{[T,0,k]} = (a_j^{[T,0,k]})_{j \in J_{T,0}}, k = 1, ..., m_T$, be any basis of \mathbb{R}^{m_T} , where $m_T = \#J_{T,0} = \#\mathcal{N}_T = \#\mathcal{Z}_T$. We define $\tilde{a}^{[\tau,q,k]} = (\tilde{a}^{[\tau,q,k]}_j)_{j \in J}$, with $J = \bigcup_{\tau,q} J_{\tau,q}$, by

$$\tilde{a}_{j}^{[\tau, q, k]} := \begin{cases} a_{j}^{[\tau, q, k]}, & \text{if } j \in J_{\tau, q}, \\ 0, & \text{otherwise.} \end{cases}$$

Then the vectors $\tilde{a}^{[\tau, q, k]}$, $k = 1, ..., m_{\tau, q}$, $q = 0, ..., q_{\ell}$, $\tau \in \mathcal{T}_{\ell}$, $0 \leq \ell \leq n$, where

$$q_{\ell} = \begin{cases} r 2^{n-\ell-1}, & \text{if } 0 \leq \ell \leq n-1, \\ 0, & \text{if } \ell = n, \end{cases}$$
(5.5)

obviously form a basis for N(C). The corresponding basis

$$\tilde{s}^{[\tau, q, k]}, \qquad k = 1, ..., m_{\tau, q}, \qquad q = 0, ..., q_{\ell}, \qquad \tau \in \mathcal{T}_{\ell}, \qquad 0 \leq \ell \leq n, \quad (5.6)$$

for $\mathscr{G}^{r}_{d}(\Delta)$ produced by Algorithm 2.4 satisfies

$$\eta_{j}^{[\tau, q]} \tilde{s}^{[\tau, q, k]} = a_{j}^{[\tau, q, k]}, \qquad j \in J_{\tau, q},$$

$$\eta \tilde{s}^{[\tau, q, k]} = 0, \qquad \text{all} \quad \eta \in \mathcal{N} \setminus \mathcal{N}_{\tau, q}.$$
(5.7)

Denote by

$$\widetilde{\lambda}^{[\tau, q, k]}, \qquad k = 1, ..., m_{\tau, q}, \qquad q = 0, ..., q_{\ell}, \qquad \tau \in \mathscr{T}_{\ell}, \qquad 0 \leqslant \ell \leqslant n,$$
(5.8)

the dual basis for $\mathscr{G}_d^r(\varDelta)^*$ determined by the duality condition

$$\widetilde{\lambda}^{[\tau, q, k]} \widetilde{s}^{[\tau', q', k']} = \begin{cases} 1, & \text{if } \tau = \tau', q = q' \text{ and } k = k', \\ 0, & \text{otherwise.} \end{cases}$$

THEOREM 5.3. The basis (5.6) for $\mathscr{G}_d^r(\Delta)$, where $d \ge r2^n + 1$, is local. Moreover,

$$\operatorname{supp} \tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau), \tag{5.9}$$

and the dual basis (5.8) satisfies

 $\tilde{\lambda}^{[\tau, q, k]} s = 0 \qquad for \ all \quad s \in \mathcal{S}^{r}_{d}(\Delta) \qquad such \ that \quad s|_{\operatorname{star}(\tau)} = 0. \tag{5.10}$

Proof. By (5.7) we have $\eta \tilde{s}^{[\tau, q, k]} = 0$ for all $\eta \in \mathcal{N} \setminus \mathcal{N}_{\tau, q}$. Since $\mathcal{N}_{\tau, q} \cap \mathcal{N}(T) \neq \emptyset$ only if $\tau \subset T$, (5.9) follows from the fact that $\mathcal{N}(T)$ is a determining set for Π^n_d , see Theorem 3.2. To show (5.10), we consider the matrix A with columns

 $\tilde{a}^{[\tau, q, k]}, \qquad k = 1, ..., m_{\tau, q}, \qquad q = 0, ..., q_{\ell}, \qquad \tau \in \mathcal{F}_{\ell}, \qquad 0 \leqslant \ell \leqslant n.$

This matrix is block diagonal,

$$\begin{aligned} A &= \operatorname{diag}(A_{\tau})_{\tau \in \mathscr{F}}, \\ A_{\tau} &= \operatorname{diag}(A_{\tau,q})_{q=0,\ldots,q_{\ell}}, \qquad \tau \in \mathscr{F}_{\ell}, \qquad 0 \leqslant \ell \leqslant n, \end{aligned}$$

where $A_{\tau,q} := (a_j^{[\tau,q,k]})_{j \in J_{\tau,q}, k=1, ..., m_{\tau,q}}$. Let $B_{\tau,q}$ be a left inverse of $A_{\tau,q}$. Then $B := \operatorname{diag}(B_{\tau})_{\tau \in \mathscr{F}}$, with $B_{\tau} = \operatorname{diag}(B_{\tau,q})_{q=0, ..., q_{\ell}}$, $\tau \in \mathscr{F}_{\ell}$, $0 \leq \ell \leq n$, is a left inverse of A. Hence, by Lemma 2.5, $\tilde{\lambda}^{[\tau,q,k]}$ is a linear combination of $\eta_j^{[\tau,q]}$, $j \in J_{\tau,q}$. This implies (5.10) since for every $\eta \in \mathscr{N}_{\tau,q}$ we obviously have $\eta s = 0$ if $s|_{\operatorname{star}(\tau)} = 0$.

Remark 5.4. A similar analysis of the space $\mathscr{S}_d^r(\Delta)$, $d \ge r2^n + 1$, was done in [2] by using Bernstein-Bézier smoothness conditions [5]. However, the existence of a local basis for $\mathscr{S}_d^r(\Delta)$ was shown in [2] only for $n \le 3$. The main advantage of the nodal techniques used here is that the matrix \tilde{C} in (5.1) is block diagonal, while the matrix of Bernstein-Bézier smoothness conditions is block triangular (see [6]).

6. A STABLE LOCAL BASIS FOR $\mathscr{G}^{r}_{d}(\varDelta)$

In this section we show that if the sets $\Xi_{\tau,q}$ and Ξ_T as well as the bases (5.4) for $N(C_{\tau,q})$ are properly chosen, then an appropriately renormalized version of the local basis for $S_d^r(\Delta)$ constructed above is in addition stable.

Let us denote by ω_{Δ} the *shape regularity constant* of the triangulation Δ ,

$$\omega_{\varDelta} := \max_{T \in \varDelta} \frac{h_T}{\rho_T},$$

where h_T and ρ_T are the diameter of T and the diameter of its inscribed sphere, respectively. Given $M = \bigcup_{T \in \tilde{\Delta}} T$, where $\tilde{\Delta} \subset \Delta$, we denote by |M| the *n*-dimensional volume of M.

DEFINITION 6.1. Let \mathscr{S} be a linear subspace of $\mathscr{S}_d^r(\varDelta)$. We say that a basis $\{\tilde{s}_1, ..., \tilde{s}_m\}$ for \mathscr{S} is L_p -stable if there exist constants K_1, K_2 depending only on n, r, d and ω_{\varDelta} , such that for any $\alpha = (\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$,

$$K_1 \| \alpha \|_{\ell_p} \leq \left\| \sum_{k=1}^m \alpha_k \tilde{s}_k \right\|_{L_p(\Omega)} \leq K_2 \| \alpha \|_{\ell_p}.$$

To establish stability of a local basis it seems most convenient to use the following general lemma; see also [23].

LEMMA 6.2. Let $\{s_1, ..., s_m\}$ be a γ -local basis for \mathscr{S} , and let $\{\lambda_1, ..., \lambda_m\} \subset \mathscr{S}^*$ be its dual basis. Suppose that

$$\|s_k\|_{L_{\infty}(\Omega)} \leq C_1, \qquad k = 1, ..., m,$$
 (6.1)

and

$$|\lambda_k s| \leq C_2 \|s\|_{L_{\infty}(\operatorname{star}^{\gamma}(v_k))}, \quad all \quad s \in \mathscr{S}, \qquad k = 1, ..., m, \tag{6.2}$$

where supp $s_k \subset \operatorname{star}^{\gamma}(v_k)$ as in Definition 5.1. Then for any $\alpha = (\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$,

$$K_1 C_2^{-1} \|\alpha\|_{\ell_p} \leq \left\| \sum_{k=1}^m \alpha_k \frac{s_k}{|\operatorname{supp} s_k|^{1/p}} \right\|_{L_p(\Omega)} \leq K_2 C_1 \|\alpha\|_{\ell_p}, \qquad 1 \leq p \leq \infty,$$
(6.3)

where K_1 , K_2 are some constants depending only on n, r, d, γ and ω_A .

Proof. Let $s = \sum_{k=1}^{m} \alpha_k (s_k / |\operatorname{supp} s_k|^{1/p})$. We first prove the upper bound in (6.3). Given an *n*-simplex $T \in A$, we have by (6.1)

$$\begin{split} \|s\|_T\|_{L_p(T)} &\leqslant C_1 (\,\#\Sigma_T)^{1-1/p} \begin{cases} \left(\sum_{k \in \Sigma_T} |\alpha_k|^p\right)^{1/p}, & \text{ if } 1 \leqslant p < \infty, \\ \max_{k \in \Sigma_T} |\alpha_k|, & \text{ if } p = \infty, \end{cases} \end{split}$$

where

$$\Sigma_T := \{k: T \subset \operatorname{supp} s_k\}.$$
(6.4)

As in the bivariate case (see Lemmas 3.1 and 3.2 in [23]), it is not difficult to show that

$$\#\left\{T \in \varDelta : T \subset \operatorname{star}^{\gamma}(v_k)\right\} \leqslant \tilde{K}_1 \tag{6.5}$$

and

$$\max\left\{\frac{|\operatorname{star}^{\gamma}(v_k)|}{|T|}: T \subset \operatorname{star}^{\gamma}(v_k)\right\} \leqslant \widetilde{K}_2, \tag{6.6}$$

where \tilde{K}_1 , \tilde{K}_2 are some constants depending only on n, γ and ω_{Δ} . Hence, for $1 \leq p < \infty$ we have

$$\|s\|_{L_{p}(\Omega)}^{p} = \sum_{T \in \varDelta} \|s\|_{T}\|_{L_{p}(T)}^{p} \leqslant \tilde{K}_{1}C_{1}^{p}(\#\Sigma_{T})^{p-1} \|\alpha\|_{\ell_{p}}^{p}$$

which shows that the upper bound will be established for all $1 \le p \le \infty$ if we prove that $\#\Sigma_T$ is bounded by a constant depending only on n, r, d, γ and ω_A . To this end we note that since the basis $\{s_1, ..., s_m\}$ is γ -local, supp $s_k \subset \operatorname{star}^{2\gamma}(v)$, for all $k \in \Sigma_T$, where v is any vertex of T. Therefore, the set $\{s_k : k \in \Sigma_T\}$ is linearly independent on $\operatorname{star}^{2\gamma}(v)$, and its cardinality $\#\Sigma_T$ does not exceed the dimension of the space of all piecewise polynomials of degree d on $\operatorname{star}^{2\gamma}(v)$, i.e., $\#\Sigma_T \le N(\frac{n+d}{n})$, where N is the number of n-simplices of Δ lying in $\operatorname{star}^{2\gamma}(v)$. By (6.5), N is bounded by a constant depending only on n, γ and ω_A , and the assertion follows.

To establish the lower bound in (6.3), we obtain by (6.2),

$$|\alpha_k| = |\operatorname{supp} s_k|^{1/p} |\lambda_k s| \leqslant C_2 |\operatorname{supp} s_k|^{1/p} ||s||_{L_{\infty}(\operatorname{star}^{\gamma}(v_k))}, \qquad k = 1, ..., m.$$

Since $||s||_{L_{\infty}(\operatorname{star}^{\gamma}(v_k))} \leq ||s||_{L^{\infty}(\Omega)}$, this completes the proof in the case $p = \infty$. Suppose $1 \leq p < \infty$. By a Nikolskii-type inequality, see e.g. [27, p. 56], for some *n*-simplex $T_k \subset \operatorname{star}^{\gamma}(v_k)$,

$$\|s\|_{L_{\infty}(\operatorname{star}^{\gamma}(v_{k}))} = \|s\|_{T_{k}}\|_{L_{\infty}(T_{k})} \leq \tilde{K}_{3} \|T_{k}\|^{-1/p} \|s\|_{T_{k}}\|_{L_{p}(T_{k})},$$

where \tilde{K}_3 is a constant depending only on *n* and *d*. Since supp $s_k \subset \text{star}^{\gamma}(v_k)$, we have by (6.6),

$$\frac{|\operatorname{supp} s_k|}{|T_k|} \leqslant \tilde{K}_2.$$

Therefore,

$$\sum_{k=1}^{m} |\alpha_{k}|^{p} \leq \tilde{K}_{2}(\tilde{K}_{3}C_{2})^{p} \sum_{k=1}^{m} \int_{T_{k}} |s|^{p}.$$

We now have to bound the number of appearances of a given *n*-simplex T_k on the right-hand side of the above inequality. If $T_{k_1} = T_{k_2}$, then $\operatorname{star}^{\gamma}(v_{k_1}) \cap \operatorname{star}^{\gamma}(v_{k_2}) \neq \emptyset$. Hence, $\operatorname{supp} s_{k_2} \subset \operatorname{star}^{3\gamma}(v_{k_1})$. Thus, for all k such that $T_k = T_{k_1}$,

supp
$$s_k \subset \operatorname{star}^{3\gamma}(v_k)$$
.

The set $\{s_k : T_k = T_{k_1}\}$ is linearly independent on star³ (v_{k_1}) , and it can be shown as above that its cardinality is bounded by a constant \tilde{K}_4 depending only on n, γ and ω_A . Therefore,

$$\sum_{k=1}^{m} \int_{T_k} |s|^p \leqslant \tilde{K}_4 \int_{\Omega} |s|^p,$$

which completes the proof.

We are ready to formulate our main result about stability of the local basis constructed in Section 5. For each $\tau \in \mathcal{T}$, denote by h_{τ} the *diameter* of the set $\operatorname{star}(\tau)$. (This is compatible with the above notation h_T for $T \in \mathcal{T}_n = \Delta$ since $\operatorname{star}(T) = T$.)

THEOREM 6.3. Suppose that

(1) every $\Xi_{\tau,q}$, $q = 0, ..., q_{\ell}$, $\tau \in \mathcal{T}_{\ell}$, $1 \leq \ell \leq n$ (where $\Xi_{T,0} := \Xi_T$ if $T \in \mathcal{T}_n$), is chosen to be the set of uniformly distributed points in the interior of τ , as defined in (3.5); and

(2) for each $q = 0, ..., q_{\ell}$ and $\tau \in \mathcal{T}_{\ell}, 0 \leq \ell \leq n$, the vectors

$$a^{[\tau, q, k]} = (a^{[\tau, q, k]}_{j})_{j \in J_{\tau, q}}, \qquad k = 1, ..., m_{\tau, q}, \tag{6.7}$$

form an orthonormal basis for $N(C_{\tau,q})$.

Let $\tilde{s}^{[\tau, q, k]}$ be the local basis functions for $\mathscr{G}_d^r(\Delta)$, $d \ge r2^n + 1$, constructed as in Section 5. Then for every $1 \le p \le \infty$, the splines

$$\begin{split} h_{\tau}^{-q} |\mathrm{star}(\tau)|^{-1/p} \, \tilde{s}^{[\tau, q, k]}, & k = 1, ..., m_{\tau, q}, \\ q = 0, ..., q_{\ell}, & \tau \in \mathcal{T}_{\ell}, & 0 \leqslant \ell \leqslant n, \end{split}$$

form an L_p -stable local basis for $\mathscr{G}^r_d(\Delta)$.

Proof. As shown in Section 5, the splines $\tilde{s}^{[\tau, q, k]}$ are 1-local, and supp $\tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau)$. By (6.6),

$$|\operatorname{supp} \tilde{s}^{[\tau, q, k]}| \leq |\operatorname{star}(\tau)| \leq \tilde{K}_2 |\operatorname{supp} \tilde{s}^{[\tau, q, k]}|,$$

where \tilde{K}_2 depends only on *n* and ω_{Δ} . Hence, in view of Lemma 6.2, the theorem will be established once we prove that

$$\|\tilde{s}^{[\tau, q, k]}\|_{L_{\infty}(\Omega)} \leqslant C_1 h^q_{\tau}, \tag{6.8}$$

and

$$|\tilde{\lambda}^{[\tau, q, k]}s| \leqslant C_2 h_{\tau}^{-q} \|s\|_{L_{\infty}(\operatorname{star}(\tau))}, \quad \text{all} \quad s \in \mathscr{S}^r_d(\varDelta), \tag{6.9}$$

where the constants C_1 , C_2 depend only on n, r, d and ω_A .

We first show (6.8). Since supp $\tilde{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau)$, we have $\|\tilde{s}^{[\tau, q, k]}\|_{L_{\infty}(\Omega)} = \|\tilde{s}^{[\tau, q, k]}\|_{L_{\infty}(\operatorname{star}(\tau))}$. Let *T* be an *n*-simplex in star(τ), and let \mathscr{H}_{T} be the Hermite interpolation operator defined in (3.4). Since $\tilde{s}^{[\tau, q, k]}|_{T} = \mathscr{H}_{T}\tilde{s}^{[\tau, q, k]}|_{T}$, we have by Lemma 3.3,

$$\|\tilde{s}^{[\tau, q, k]}|_T\|_{L_{\infty}(T)} \leq \tilde{K}_5 \max_{\eta \in \mathcal{N}(T)} h_T^{q(\eta)} |\eta \tilde{s}^{[\tau, q, k]}|,$$

where \tilde{K}_5 depends only on *n*, *r* and *d*. Now, by (5.7), $\eta \tilde{s}^{[\tau, q, k]} = 0$ for all $\eta \in \mathcal{N}(T) \setminus \mathcal{N}_{\tau, q}$, and

$$\eta_j^{[\tau,q]}\tilde{s}^{[\tau,q,k]} = a_j^{[\tau,q,k]}, \qquad j \in J_{\tau,q}.$$

Since the vectors $a^{[\tau, q, k]}$, $k = 1, ..., m_{\tau, q}$, are orthonormal, we have $|a_j^{[\tau, q, k]}| \leq 1$. Taking into account that $q(\eta) = q$ for all $\eta \in \mathcal{N}_{\tau, q}$, we arrive at the estimate

$$\|\tilde{s}^{[\tau, q, k]}\|_{T}\|_{L_{\infty}(T)} \leqslant \tilde{K}_{5}h_{T}^{q} \leqslant \tilde{K}_{5}h_{\tau}^{q},$$

and (6.8) is proved.

By our hypotheses, the columns of the matrix

$$A_{\tau, q} = [a_j^{[\tau, q, k]}]_{j \in J_{\tau, q}, k = 1, \dots, m_{\tau, q}}$$
(6.10)

are orthonormal. Hence, $A_{\tau,q}^T$ is a left inverse of $A_{\tau,q}$. By Lemma 2.5 and the proof of Theorem 5.3, it follows that the dual functional $\tilde{\lambda}^{[\tau,q,k]}$ can be computed as

$$\widetilde{\lambda}^{[\tau, q, k]} = \sum_{j \in J_{\tau, q}} a_j^{[\tau, q, k]} \eta_j^{[\tau, q]}.$$

Therefore, for any $s \in \mathscr{S}_d^r(\varDelta)$,

$$|\tilde{\lambda}^{[\tau, q, k]}s| = \left|\sum_{j \in J_{\tau, q}} a_j^{[\tau, q, k]} \eta_j^{[\tau, q]}s\right| \leqslant \#J_{\tau, q} \max_{j \in J_{\tau, q}} |\eta_j^{[\tau, q]}s|.$$

293

Given $j \in J_{\tau,q}$, let *T* be an *n*-simplex such that $\tau \subset T$ and $\eta_j^{[\tau,q]} \in \mathcal{N}(T)$. Since $\eta_j^{[\tau,q]}$ is a nodal functional of order *q*, we have by Markov inequality (see, e.g. [13]),

$$|\eta_{j}^{[\tau, q]}s| = |\eta_{j}^{[\tau, q]}s|_{T}| \leqslant \tilde{K}_{6}\rho_{T}^{-q} \|s|_{T}\|_{L_{\infty}(T)} \leqslant \tilde{K}_{6}\omega_{\varDelta}^{q}h_{T}^{-q} \|s\|_{L_{\infty}(\operatorname{star}(\tau))},$$

where \tilde{K}_6 is a constant depending only on *n* and *d*. Since $\#J_{\tau,q} = \#\mathcal{N}_{\tau,q}$ is bounded above by a constant depending only on *n*, *r*, *d* and ω_d , the estimate (6.9) follows, and the proof is complete.

It is easy to see that Theorem 6.3 remains valid for any $\Xi_{\tau,q}$ such that the Hermite interpolation operator defined by (3.4) satisfies (3.6), and for any choice of the bases (6.7) for $N(C_{\tau,q})$ such that the *condition number* of the matrix (6.10) is bounded by a constant K depending only on n, r, d and ω_A ; compare [6]. However, there is a good reason to prefer, at least in practice, an *orthonormal basis* for $N(C_{\tau,q})$, as explained in the following remark.

Remark 6.4. There is a numerically efficient way to compute an orthonormal basis $a^{[\tau, q, k]} = (a_j^{[\tau, q, k]})_{j \in J_{\tau,q}}, k = 1, ..., m_{\tau,q}$, for each $N(C_{\tau,q})$, as required in the above theorem. Namely, construct by an appropriate algorithm a singular value decomposition $C_{\tau,q} = Q_L X Q_R^T$ of the matrix $C_{\tau,q}$, where Q_L, Q_R are orthogonal matrices, and $X = [D \ O], D = \text{diag}(\sigma_1, ..., \sigma_p)$, with $\sigma_1 \ge \cdots \ge \sigma_p \ge 0$ being the singular values of $C_{\tau,q}$, see e.g. [29]. Obviously, $m_{\tau,q}$ is equal to the number of zero columns in X (including the columns corresponding to zero singular values). Hence, the columns of the matrix $[O \ I_{m_{\tau,q}}]^T$ constitute an orthonormal basis for N(X). Since $C_{\tau,q} Q_R = Q_L X$, the columns of $A_{\tau,q} = Q_R [O \ I_{m_{\tau,q}}]^T$ form the desired orthonormal basis for $N(C_{\tau,q})$. Thus, the matrix $A_{\tau,q}$ consists of the last $m_{\tau,q}$ columns of Q_R .

7. SUPERSPLINE SPACES

In this section we construct stable local bases for the superspline subspaces of $\mathscr{G}_d^r(\Delta)$.

DEFINITION 7.1. Let $\rho = (\rho_{\tau})_{\tau \in \mathscr{F} \setminus (\mathscr{F}_{n-1} \cup \mathscr{F}_n)}$ be a sequence of integers satisfying

$$r \leqslant \rho_{\tau} \leqslant 2^{n-\ell-1}, \qquad \tau \in \mathcal{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n-2.$$

$$(7.1)$$

The linear space of splines

 $\mathscr{S}_{d}^{r,\rho}(\Delta) := \left\{ s \in \mathscr{S}_{d}^{r}(\Delta) : s \text{ is } \rho_{\tau} \text{-times differentiable across } \tau, \\ \text{for all } \tau \in \mathscr{T} \setminus (\mathscr{T}_{n-1} \cup \mathscr{T}_{n}) \right\}$ (7.2)

is called a superspline space.

In the limiting case $\rho_{\tau} = 2^{n-\ell-1}$, $\tau \in \mathcal{T} \setminus (\mathcal{T}_{n-1} \cup \mathcal{T}_n)$, the superspline spaces were introduced and studied in [8–11], see also [3, 4]. In particular, local bases for $\mathcal{S}_d^r \rho(\Delta)$, where $\rho_{\tau} = 2^{n-\ell-1}$, were constructed in [11] and [4]. For general ρ_{τ} , but only in the bivariate case n = 2, the superspline spaces were explored in [22, 28] and, more recently, in [18, 19].

As we will see, our method of construction of a stable local basis can be applied to the spaces (7.2). We first have to extend the system \Re of smoothness conditions defined in (4.4)–(4.8) to a larger system $\hat{\Re}$, by allowing a larger range of r' in (4.4) and (4.5). Namely, we include in the extended systems $\hat{\Re}_{v,q}$ and $\hat{\Re}_{\tau,q,\xi}$ all conditions (4.4) and (4.5), respectively, where $0 \le r' \le \min\{\rho_{\tau}, q\}$. The systems $\Re_{F,q,\xi}$ are not enlarged, i.e., we set $\hat{\Re}_{F,q,\xi} = \Re_{F,q,\xi}$.

By the method of proof of Theorem 4.4 it is not difficult to establish the following analogue of it.

THEOREM 7.2. The set $\hat{\mathcal{R}}$ is a complete system of linear relations for \mathcal{N} over $\mathscr{G}_{d}^{r,\rho}(\Delta)$.

It is easy to see that the matrix \hat{C} of the system $\hat{\mathscr{R}}$ possesses a block diagonal structure similar to the structure of the matrix C considered in Section 5. Therefore, all results about the dimension and the local bases carry over to the superspline spaces. Thus, we have

$$\dim \mathcal{G}_{d}^{r,\rho}(\varDelta) = \# \mathcal{N} - \sum_{\tau \in \mathcal{F} \setminus \mathcal{F}_{n}} \operatorname{rank} \hat{C}_{\tau}$$
$$= \# \mathcal{N} - \sum_{v \in \mathcal{F}_{0}} \sum_{q=0}^{r2^{n-1}} \operatorname{rank} \hat{C}_{v,q}$$
$$- \sum_{\ell=1}^{n-1} \sum_{\tau \in \mathcal{F}_{\ell}} \sum_{q=0}^{r2^{n-\ell-1}} \sum_{\xi \in \mathcal{Z}_{\tau,q}} \operatorname{rank} \hat{C}_{\tau,q,\xi},$$

where \hat{C}_{τ} , $\hat{C}_{v,q}$ and $\hat{C}_{\tau,q,\xi}$ are the appropriate blocks of \hat{C} . Define the splines

$$\hat{s}^{[\tau, q, k]}, \quad k = 1, ..., \hat{m}_{\tau, q}, \quad q = 0, ..., q_{\ell}, \quad \tau \in \mathcal{T}_{\ell}, \quad 0 \leq \ell \leq n,$$
(7.4)

by the condition

$$\eta_{j}^{[\tau, q]} \hat{s}^{[\tau, q, k]} = \hat{a}_{j}^{[\tau, q, k]}, \qquad j \in J_{\tau, q},$$

$$\eta \hat{s}^{[\tau, q, k]} = 0, \qquad \text{all} \quad \eta \in \mathcal{N} \setminus \mathcal{N}_{\tau, q},$$
(7.5)

where

$$\hat{a}^{[\tau, q, k]} = (\hat{a}^{[\tau, q, k]}_{j})_{j \in J_{\tau, q}}, \qquad k = 1, ..., \hat{m}_{\tau, q}, \tag{7.6}$$

is a basis for $N(\hat{C}_{\tau,q})$.

THEOREM 7.3. The splines (7.4) form a local basis for $\mathscr{G}_{d}^{r,\rho}(\Delta)$, where ρ satisfies (7.1), and $d \ge r2^n + 1$. Moreover,

$$\operatorname{supp} \hat{s}^{[\tau, q, k]} \subset \operatorname{star}(\tau), \tag{7.7}$$

and the dual basis (5.8) satisfies

$$\lambda^{\lfloor \tau, q, k \rfloor} s = 0 \qquad \text{for all} \quad s \in \mathcal{S}_d^r(\Delta) \qquad \text{such that} \quad s|_{\operatorname{star}(\tau)} = 0.$$
(7.8)

Since (7.4) is a local basis for $\mathscr{G}_d^r(\varDelta)$, Lemma 6.2 can be applied, and the same argument as in the proof of Theorem 6.3 shows that the following result holds.

THEOREM 7.4. Suppose that

(1) every $\Xi_{\tau,q}$, $q = 0, ..., q_{\ell}$, $\tau \in \mathcal{T}_{\ell}$, $1 \leq \ell \leq n$ (where $\Xi_{T,0} := \Xi_T$ if $T \in \mathcal{T}_n$), is chosen to be the set of uniformly distributed points in the interior of τ , as defined in (3.5), and

(2) for each $q = 0, ..., q_{\ell}$ and $\tau \in \mathcal{T}_{\ell}, \ 0 \leq \ell \leq n$, vectors $\hat{a}^{[\tau, q, k]} = (\hat{a}_{j}^{[\tau, q, k]})_{j \in J_{\tau, q}}, k = 1, ..., m_{\tau, q}$, form an orthonormal basis for $N(\hat{C}_{\tau, q})$.

Let $\hat{s}^{[\tau, q, k]}$ be the local basis functions (7.4) for $\mathscr{G}_d^{r, \rho}(\Delta)$, where ρ satisfies (7.1), and $d \ge r2^n + 1$. Then for every $1 \le p \le \infty$, the splines

$$\begin{split} h_{\tau}^{-q} |\mathrm{star}(\tau)|^{-1/p} \, \hat{s}^{[\tau, q, k]}, & k = 1, \, ..., \, m_{\tau, q}, \\ q = 0, \, ..., \, q_{\ell}, & \tau \in \mathcal{T}_{\ell}, \quad 0 \leqslant \ell \leqslant n, \end{split}$$

form an L_p -stable local basis for $\mathscr{G}_d^{r,\rho}(\varDelta)$.

OLEG DAVYDOV

ACKNOWLEDGMENTS

The author is grateful to the editor of this paper and to a referee for helpful suggestions for improving the manuscript and for pointing out a number of misprints in its original version.

REFERENCES

- 1. P. Alfeld, B. Piper, and L. L. Schumaker, Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree $d \ge 4r + 1$, *Comput. Aided Geom. Design* 4 (1987), 105–123.
- P. Alfeld, L. L. Schumaker, and M. Sirvent, On dimension and existence of local bases for multivariate spline spaces, J. Approx. Theory 70 (1992), 243–264.
- P. Alfeld and M. Sirvent, A recursion formula for the dimension of super spline spaces of smoothness r and degree d>r2^k, in "Multivariate Approximation Theory IV, ISNM 90" (C. Chui, W. Schempp, and K. Zeller, Eds.), pp. 1–8, Birkhäuser, Basel, 1989.
- P. Alfeld and M. Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp. 57(195) (1991), 299–308.
- C. de Boor, *B*-form basics, *in* "Geometric Modeling: Algorithms and New Trends" (G. E. Farin, Ed.), pp. 131–148, SIAM, Philadelphia, 1987.
- C. de Boor, A local basis for certain smooth bivariate pp spaces, *in* "Multivariate Approximation Theory IV, ISNM 90" (C. Chui, W. Schempp, and K. Zeller, Eds.), pp. 25–30, Birkhäuser, Basel, 1989.
- C. K. Chui, D. Hong, and R.-Q. Jia, Stability of optimal order approximation by bivariate splines over arbitrary triangulations, *Trans. Amer. Math. Soc.* 347 (1995), 3301–3318.
- C. K. Chui and M.-J. Lai, On bivariate vertex splines, *in* "Multivariate Approximation Theory III, ISNM 75" (W. Schempp and K. Zeller, Eds.), pp. 84–115, Birkhäuser, Basel, 1985.
- 9. C. K. Chui and M.-J. Lai, On bivariate super vertex splines, *Constr. Approx.* 6 (1990), 399-419.
- C. K. Chui and M.-J. Lai, On multivariate vertex splines and applications, *in* "Topics in Multivariate Approximation" (C. K. Chui, L. L. Schumaker, and F. Utreras, Eds.), pp. 19–36, Academic Press, New York, 1987.
- 11. C. K. Chui and M.-J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory 60 (1990), 245-343.
- P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, The Netherlands, 1978.
- 13. P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in \mathbb{R}^N with applications to finite element methods, *Arch. Rational Mech. Anal.* 46 (1972), 177–199.
- W. Dahmen, P. Oswald, and X.-Q. Shi, C¹-hierarchical bases, J. Comput. Appl. Math. 51 (1994), 37–56.
- O. Davydov, Locally linearly independent basis for C¹ bivariate splines, *in* "Mathematical Methods for Curves and Surfaces II" (M. Dæhlen, T. Lyche, and L. Schumaker, Eds.), pp. 71–78, Vanderbilt University Press, Nashville/London, 1998.
- O. Davydov, G. Nürnberger, and F. Zeilfelder, Bivariate spline interpolation with optimal approximation order, *Constr. Approx.* 17 (2001), 181–208.
- O. Davydov and L. L. Schumaker, Stable local nodal bases for C¹ bivariate polynomial splines, *in* "Curve and Surface *Fitting: Saint-Malo 1999" (A. Cohen, C. Rabut, and L. L. Schumaker, Eds.), pp. 171–180, Vanderbilt University Press, Nashville, TN, 2000.
- O. Davydov and L. L. Schumaker, Locally linearly independent bases for bivariate polynomial splines, Adv. Comput. Math. 13 (2000), 355–373.

- O. Davydov and L. L. Schumaker, On stable local bases for bivariate polynomial spline spaces, *Constr. Approx.*, to appear.
- G. Farin, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design 3 (1986), 83-127.
- D. Hong, Spaces of bivariate spline functions over triangulation, *Approx. Theory Appl.* 7 (1991), 56–75.
- 22. A. Ibrahim and L. L. Schumaker, Super spline spaces of smoothness r and degree $d \ge 3r + 2$, Constr. Approx. 7 (1991), 401–423.
- M.-J. Lai and L. L. Schumaker, On the approximation power of bivariate splines, Adv. Comput. Math. 9 (1998), 251–279.
- 24. A. Le Méhauté, Unisolvent interpolation in ℝⁿ and the simplicial polynomial finite element method, *in* "Topics in Multivariate Approximation" (C. K. Chui, L. Schumaker, and F. Utreras, Eds.), pp. 141–151, Academic Press, New York, 1987.
- A. Le Méhauté, Nested sequences of triangular finite element spaces, *in* "Multivariate Approximation: Recent Trends and Results" (W. Haussman, K. Jetter, and M. Reimer, Eds.), pp. 133–145, Akademie-Verlag, Berlin, 1997.
- 26. J. Morgan and R. Scott, A nodal basis for C^1 piecewise polynomials of degree $n \ge 5$, Math. Comp. **29**(131) (1975), 736–740.
- 27. P. Oswald, "Multilevel Finite Element Approximation," Teubner, Stuttgart, 1994.
- L. L. Schumaker, On super splines and finite elements, SIAM J. Numer. Anal. 26 (1989), 997–1005.
- G. W. Stewart, "Matrix Algorithms, Volume I: Basic Decompositions," SIAM, Philadelphia, 1998.
- A. Ženišek, Polynomial approximation on tetrahedrons in the finite element method, J. Approx. Theory 7 (1973), 334–351.